Jincheng Yu , Hongli Qiang , Mingwei Shi , Zhiguo Li , Tobi Fadiji , Ali Abas Wani , Clément Burgeon
{"title":"Investigation on the protection ability of two commonly packaging methods to apples during express transportation","authors":"Jincheng Yu , Hongli Qiang , Mingwei Shi , Zhiguo Li , Tobi Fadiji , Ali Abas Wani , Clément Burgeon","doi":"10.1016/j.fpsl.2025.101475","DOIUrl":null,"url":null,"abstract":"<div><div>Packaging plays a vital role in the post-harvest sales process of apples. This study conducted express transportation tests to evaluate the protective effectiveness of two commonly used packaging methods for apples. Key parameters assessed included real-time changes in temperature, humidity, vibration load, and CO₂ levels inside the packaging boxes during transit, as well as the storage quality of apples after transportation. Results showed significant variations in load distribution within corrugated partition-based cardboard boxes (CP combination packaging). Conversely, foam holder-based cardboard boxes (FP combination packaging) exhibited CO₂ accumulation. Furthermore, mechanical damage was predominantly localized to the fruit belly. Compared to CP combination packaging box, FP combination packaging box provided more stable shock resistance at lower vibration forces (< 10 N) across transit routes, likely due to its EPS foam design, which restricted fruit movement and absorbed external vibrations. Post-storage analysis showed that damaged apples experienced a 0.16 % increase in mass loss, a 0.83 % rise in soluble solids content (SSC), and a 0.19 MPa reduction in firmness compared to undamaged controls. These findings provide valuable insights into optimizing packaging design to minimize transport-induced damage and enhance apple preservation.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"48 ","pages":"Article 101475"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289425000456","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Packaging plays a vital role in the post-harvest sales process of apples. This study conducted express transportation tests to evaluate the protective effectiveness of two commonly used packaging methods for apples. Key parameters assessed included real-time changes in temperature, humidity, vibration load, and CO₂ levels inside the packaging boxes during transit, as well as the storage quality of apples after transportation. Results showed significant variations in load distribution within corrugated partition-based cardboard boxes (CP combination packaging). Conversely, foam holder-based cardboard boxes (FP combination packaging) exhibited CO₂ accumulation. Furthermore, mechanical damage was predominantly localized to the fruit belly. Compared to CP combination packaging box, FP combination packaging box provided more stable shock resistance at lower vibration forces (< 10 N) across transit routes, likely due to its EPS foam design, which restricted fruit movement and absorbed external vibrations. Post-storage analysis showed that damaged apples experienced a 0.16 % increase in mass loss, a 0.83 % rise in soluble solids content (SSC), and a 0.19 MPa reduction in firmness compared to undamaged controls. These findings provide valuable insights into optimizing packaging design to minimize transport-induced damage and enhance apple preservation.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.