Peter Beelen , Mrinmoy Datta , Maria Montanucci , Jonathan Niemann
{"title":"Intersection of irreducible curves and the Hermitian curve","authors":"Peter Beelen , Mrinmoy Datta , Maria Montanucci , Jonathan Niemann","doi":"10.1016/j.jalgebra.2025.02.036","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the Hermitian curve in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be an irreducible plane projective curve in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> also defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of degree <em>d</em>. Can <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> intersect in exactly <span><math><mi>d</mi><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> distinct <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational points? Bézout's theorem immediately implies that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> intersect in at most <span><math><mi>d</mi><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> points, but equality is not guaranteed over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. In this paper we prove that for many <span><math><mi>d</mi><mo>≤</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>, the answer to this question is affirmative. The case <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span> is trivial: it is well known that any secant line of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> intersects <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> rational points. Moreover, all possible intersections of conics and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> were classified in <span><span>[9]</span></span> and their results imply that the answer to the question above is affirmative for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>4</mn></math></span>, as well. However, an exhaustive computer search quickly reveals that for <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><mo>{</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>, the answer is instead negative. We show that for <span><math><mi>q</mi><mo>≤</mo><mi>d</mi><mo>≤</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>d</mi><mo>=</mo><mo>⌊</mo><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span> the answer is again affirmative. Various partial results for the case <em>d</em> small compared to <em>q</em> are also provided.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"671 ","pages":"Pages 75-94"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the Hermitian curve in over and be an irreducible plane projective curve in also defined over of degree d. Can and intersect in exactly distinct -rational points? Bézout's theorem immediately implies that and intersect in at most points, but equality is not guaranteed over . In this paper we prove that for many , the answer to this question is affirmative. The case is trivial: it is well known that any secant line of defined over intersects in rational points. Moreover, all possible intersections of conics and were classified in [9] and their results imply that the answer to the question above is affirmative for and , as well. However, an exhaustive computer search quickly reveals that for , the answer is instead negative. We show that for , and , the answer is again affirmative. Various partial results for the case d small compared to q are also provided.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.