Intersection of irreducible curves and the Hermitian curve

IF 0.8 2区 数学 Q2 MATHEMATICS
Peter Beelen , Mrinmoy Datta , Maria Montanucci , Jonathan Niemann
{"title":"Intersection of irreducible curves and the Hermitian curve","authors":"Peter Beelen ,&nbsp;Mrinmoy Datta ,&nbsp;Maria Montanucci ,&nbsp;Jonathan Niemann","doi":"10.1016/j.jalgebra.2025.02.036","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the Hermitian curve in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be an irreducible plane projective curve in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> also defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of degree <em>d</em>. Can <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> intersect in exactly <span><math><mi>d</mi><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> distinct <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>-rational points? Bézout's theorem immediately implies that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> intersect in at most <span><math><mi>d</mi><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> points, but equality is not guaranteed over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. In this paper we prove that for many <span><math><mi>d</mi><mo>≤</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>, the answer to this question is affirmative. The case <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span> is trivial: it is well known that any secant line of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> intersects <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> rational points. Moreover, all possible intersections of conics and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> were classified in <span><span>[9]</span></span> and their results imply that the answer to the question above is affirmative for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≥</mo><mn>4</mn></math></span>, as well. However, an exhaustive computer search quickly reveals that for <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><mo>{</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>, the answer is instead negative. We show that for <span><math><mi>q</mi><mo>≤</mo><mi>d</mi><mo>≤</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>d</mi><mo>=</mo><mo>⌊</mo><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span> the answer is again affirmative. Various partial results for the case <em>d</em> small compared to <em>q</em> are also provided.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"671 ","pages":"Pages 75-94"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Hq denote the Hermitian curve in P2 over Fq2 and Cd be an irreducible plane projective curve in P2 also defined over Fq2 of degree d. Can Hq and Cd intersect in exactly d(q+1) distinct Fq2-rational points? Bézout's theorem immediately implies that Hq and Cd intersect in at most d(q+1) points, but equality is not guaranteed over Fq2. In this paper we prove that for many dq2q+1, the answer to this question is affirmative. The case d=1 is trivial: it is well known that any secant line of Hq defined over Fq2 intersects Hq in q+1 rational points. Moreover, all possible intersections of conics and Hq were classified in [9] and their results imply that the answer to the question above is affirmative for d=2 and q4, as well. However, an exhaustive computer search quickly reveals that for (q,d){(2,2),(3,2),(2,3)}, the answer is instead negative. We show that for qdq2q+1, d=(q+1)/2 and d=3, q3 the answer is again affirmative. Various partial results for the case d small compared to q are also provided.
不可约曲线与厄米曲线的交
设Hq为P2 / Fq2中的厄米曲线,Cd为P2中定义为d次的不可约平面投影曲线。Hq和Cd能否相交于d(q+1)个不同的Fq2有理点?bsamzout定理立即表明Hq和Cd相交于最多d(q+1)个点,但在Fq2上不能保证相等。在本文中,我们证明了对于许多d≤q2−q+1,这个问题的答案是肯定的。d=1的情况是平凡的:众所周知,在Fq2上定义的Hq的任何割线与Hq相交于q+1个有理点。并且,所有可能的conics与Hq的交点都被分类在[9]中,其结果表明,对于d=2和q≥4,上述问题的答案也是肯定的。然而,一个详尽的计算机搜索很快发现,对于(q,d)∈{(2,2),(3,2),(2,3)},答案是否定的。我们证明,对于q≤d≤q2−q+1, d=⌊(q+1)/2⌋,d=3, q≥3,答案还是肯定的。还提供了d比q小的情况下的各种部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信