Enhanced LSTM model with integrated attention mechanism and data augmentation for projecting COVID-19 trends in Africa

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Soufiana Mekouar
{"title":"Enhanced LSTM model with integrated attention mechanism and data augmentation for projecting COVID-19 trends in Africa","authors":"Soufiana Mekouar","doi":"10.1016/j.sciaf.2025.e02617","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the outcomes of epidemics promptly and precisely is crucial for decision-making and policy implementation. In this paper, we employ a long short-term memory (LSTM) method with an attention mechanism to discern the temporal correlation of COVID-19 growth. We propose a novel augmentation technique to enhance the regression model’s accuracy. A heuristic search identifies the optimal LSTM layer structure that maximizes the validation score. Initially, we trained the model on data containing confirmed cases and deaths from African countries, categorized by economic factors and GDP. The performance was better than the gated recurrent unit (GRU), LSTM, and BiLSTM methods, exhibiting a comparably low validation error. We assessed our LSTM-augmented model (LSTM-aug) using graph visualization and regression metrics on WHO COVID-19 data, demonstrating its superiority over existing methods.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02617"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the outcomes of epidemics promptly and precisely is crucial for decision-making and policy implementation. In this paper, we employ a long short-term memory (LSTM) method with an attention mechanism to discern the temporal correlation of COVID-19 growth. We propose a novel augmentation technique to enhance the regression model’s accuracy. A heuristic search identifies the optimal LSTM layer structure that maximizes the validation score. Initially, we trained the model on data containing confirmed cases and deaths from African countries, categorized by economic factors and GDP. The performance was better than the gated recurrent unit (GRU), LSTM, and BiLSTM methods, exhibiting a comparably low validation error. We assessed our LSTM-augmented model (LSTM-aug) using graph visualization and regression metrics on WHO COVID-19 data, demonstrating its superiority over existing methods.
及时准确地估计流行病的结果对于决策和政策实施至关重要。在本文中,我们采用了一种带有注意力机制的长短期记忆(LSTM)方法来辨别 COVID-19 增长的时间相关性。我们提出了一种新颖的增强技术来提高回归模型的准确性。我们通过启发式搜索找出了能使验证得分最大化的最佳 LSTM 层结构。最初,我们在包含非洲国家确诊病例和死亡病例的数据上对模型进行了训练,这些数据按经济因素和 GDP 进行了分类。该模型的性能优于门控递归单元 (GRU)、LSTM 和 BiLSTM 方法,并表现出相当低的验证误差。我们在世界卫生组织 COVID-19 数据上使用图形可视化和回归指标对 LSTM 增强模型(LSTM-aug)进行了评估,结果表明该模型优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信