Wenjie Guo , Xian Hong , Wenjun Luo , Jianwei Yan , Jian Yang
{"title":"Novel energy-based analysis approach for determining elastic wave complex band of damped periodic structures using virtual springs","authors":"Wenjie Guo , Xian Hong , Wenjun Luo , Jianwei Yan , Jian Yang","doi":"10.1016/j.apm.2025.116046","DOIUrl":null,"url":null,"abstract":"<div><div>It is of importance to determine the complex band property of damped periodic structures for the evaluation of their wave attenuation performance. In view of this, the current paper proposes a new analysis approach based on the energy method and the virtual spring model for the calculation of the complex band. Its essence is to use a virtual spring to simulate periodic boundary conditions such that the wave numbers will only appear in the stiffness matrix of the virtual spring. Subsequently, the previously existed nonlinear eigenvalue solution problem is transformed into a linear eigenvalue solution problem by decoupling the wave numbers of the stiffness matrix and by reducing the order. The calculation procedure of the proposed approach is demonstrated by a case study of a periodically discrete-supported Euler beam, and then extended to deal with two-dimensional periodic structures. The accuracy of the proposed approach is verified by comparison the results with those in existing studies. The effects of the material frequency variation and damping on the propagation and attenuation of vibration waves are investigated. The results reveal that the material frequency variation and damping have a significant effect on the range and rate of wave attenuation. The proposed method has excellent applicability and promising application potential in calculating the complex band structures analysis of coupled periodic structures.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"144 ","pages":"Article 116046"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25001210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is of importance to determine the complex band property of damped periodic structures for the evaluation of their wave attenuation performance. In view of this, the current paper proposes a new analysis approach based on the energy method and the virtual spring model for the calculation of the complex band. Its essence is to use a virtual spring to simulate periodic boundary conditions such that the wave numbers will only appear in the stiffness matrix of the virtual spring. Subsequently, the previously existed nonlinear eigenvalue solution problem is transformed into a linear eigenvalue solution problem by decoupling the wave numbers of the stiffness matrix and by reducing the order. The calculation procedure of the proposed approach is demonstrated by a case study of a periodically discrete-supported Euler beam, and then extended to deal with two-dimensional periodic structures. The accuracy of the proposed approach is verified by comparison the results with those in existing studies. The effects of the material frequency variation and damping on the propagation and attenuation of vibration waves are investigated. The results reveal that the material frequency variation and damping have a significant effect on the range and rate of wave attenuation. The proposed method has excellent applicability and promising application potential in calculating the complex band structures analysis of coupled periodic structures.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.