Anh-My Chu , Van-Cong Nguyen , Chi-Hieu Le , James Gao , Michael Packianather , Shwe Soe
{"title":"Dynamic modelling for the family of 5-axis CNC milling machines with application to feed-rate optimization","authors":"Anh-My Chu , Van-Cong Nguyen , Chi-Hieu Le , James Gao , Michael Packianather , Shwe Soe","doi":"10.1016/j.jestch.2025.102015","DOIUrl":null,"url":null,"abstract":"<div><div>The 5-axis CNC milling machines are complex mechanical systems, and they can be designed with hundreds of 5 degrees of freedom mechanisms. The kinematic and dynamic modelling of machines is crucial for optimising the machine design and the milling process. However, formulating the dynamics model of 5-axis milling machines has never been proposed so far. Moreover, efforts have been made to develop kinematic models for the machines; however, formulating the generalized kinematic model for all possible 5-axis milling machines in closed form is challenging. In this paper, a novel method of kinematic and dynamic modelling for the entire family of 5-axis milling machines is developed. First, the special features of the machines family are fully studied to formulate effectively the generalized forward and inverse kinematic equations in closed-form. Second, by treating each 5-axis mechanism as a closed mechanism subject to a nonlinear kinematic constraint characterizing the machining process, the dynamics model for the whole family of 5-axis milling machines is successfully formulated, and the inverse dynamic equation is derived in closed-form. Finally, to demonstrate the importance and impact of the proposed method, useful applications were conducted; and these were supported by both numerical simulations and actual cutting experiments. Compared with previous works, our study includes new generalized equations of kinematics and dynamics for the family of 5-axis milling machines, and useful applications of the proposed equations for optimization of the 5-axis machining.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"65 ","pages":"Article 102015"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625000709","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The 5-axis CNC milling machines are complex mechanical systems, and they can be designed with hundreds of 5 degrees of freedom mechanisms. The kinematic and dynamic modelling of machines is crucial for optimising the machine design and the milling process. However, formulating the dynamics model of 5-axis milling machines has never been proposed so far. Moreover, efforts have been made to develop kinematic models for the machines; however, formulating the generalized kinematic model for all possible 5-axis milling machines in closed form is challenging. In this paper, a novel method of kinematic and dynamic modelling for the entire family of 5-axis milling machines is developed. First, the special features of the machines family are fully studied to formulate effectively the generalized forward and inverse kinematic equations in closed-form. Second, by treating each 5-axis mechanism as a closed mechanism subject to a nonlinear kinematic constraint characterizing the machining process, the dynamics model for the whole family of 5-axis milling machines is successfully formulated, and the inverse dynamic equation is derived in closed-form. Finally, to demonstrate the importance and impact of the proposed method, useful applications were conducted; and these were supported by both numerical simulations and actual cutting experiments. Compared with previous works, our study includes new generalized equations of kinematics and dynamics for the family of 5-axis milling machines, and useful applications of the proposed equations for optimization of the 5-axis machining.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)