SiO2 doped halogen-rich argyrodites for high-performance all-solid-state lithium–sulfur batteries

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Jie-Fu Zhuo , Zhi-Feng Yao
{"title":"SiO2 doped halogen-rich argyrodites for high-performance all-solid-state lithium–sulfur batteries","authors":"Jie-Fu Zhuo ,&nbsp;Zhi-Feng Yao","doi":"10.1016/j.ssi.2025.116813","DOIUrl":null,"url":null,"abstract":"<div><div>The argyrodite-type sulfide electrolytes (Li<sub>6</sub>PS<sub>5</sub>X, X = Cl, Br, I) have demonstrated numerous benefits for high-performance and secure all-solid-state lithium‑sulfur batteries (ASSLSBs). These advantages include their rapid lithium (Li) ion conduction and exceptional compatibility with the anode. Nevertheless, despite these benefits, the key obstacles for their implementation are the need for higher room-temperature ionic conductivity, improved air/moisture compatibility, and enhanced electrochemical stability. In this study, we propose a halogen-rich argyrodite (Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>1.7-x</sub>Br<sub>x</sub>) to obtain ultrafast ionic conductivity at ambient temperature. To enhance the ionic transport channel, the anion disorder on the site is optimized and the Li vacancies in the structure are increased by substituting anions with halogens (Cl/Br). The Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> is synthesized effectively by a high-energy ball milling process, resulting in a remarkable ionic conductivity of 9.07 mS⋅cm<sup>−1</sup> at room temperature. In addition, a SiO<sub>2</sub> dopant is utilized to strengthen the lattice structure of the solid-state electrolyte (Li<sub>5.3+y</sub>Si<sub>y</sub>P<sub>1-y</sub>S<sub>4.3-2y</sub>O<sub>2y</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub>) in order to improve its resistance to air/moisture and enhance its electrochemical stability within specific voltage ranges. The Li<sub>5.4</sub>Si<sub>0.1</sub>P<sub>0.9</sub>S<sub>4.1</sub>O<sub>0.2</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> with optimized composition demonstrates an ionic conductivity of 8.2 mS⋅cm<sup>−1</sup> at room temperature and exceptional stability in air. The ASSLSBs containing Li<sub>5.4</sub>Si<sub>0.1</sub>P<sub>0.9</sub>S<sub>4.1</sub>O<sub>0.2</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> exhibit impressive specific capacities of 1191 mAh⋅g<sup>−1</sup> (0.1C after the initial cycle) and 989 mAh⋅g<sup>−1</sup> (0.1C after 100 cycles) at room temperature. Additionally, they demonstrate significant cyclability (83.04 % after 100 cycles) and excellent Coulombic efficiency (&gt;99.5 %). This study presents a novel strategy to promote the application of sulfide electrolytes in fabricating ASSLSBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116813"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000323","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The argyrodite-type sulfide electrolytes (Li6PS5X, X = Cl, Br, I) have demonstrated numerous benefits for high-performance and secure all-solid-state lithium‑sulfur batteries (ASSLSBs). These advantages include their rapid lithium (Li) ion conduction and exceptional compatibility with the anode. Nevertheless, despite these benefits, the key obstacles for their implementation are the need for higher room-temperature ionic conductivity, improved air/moisture compatibility, and enhanced electrochemical stability. In this study, we propose a halogen-rich argyrodite (Li5.3PS4.3Cl1.7-xBrx) to obtain ultrafast ionic conductivity at ambient temperature. To enhance the ionic transport channel, the anion disorder on the site is optimized and the Li vacancies in the structure are increased by substituting anions with halogens (Cl/Br). The Li5.3PS4.3Cl0.85Br0.85 is synthesized effectively by a high-energy ball milling process, resulting in a remarkable ionic conductivity of 9.07 mS⋅cm−1 at room temperature. In addition, a SiO2 dopant is utilized to strengthen the lattice structure of the solid-state electrolyte (Li5.3+ySiyP1-yS4.3-2yO2yCl0.85Br0.85) in order to improve its resistance to air/moisture and enhance its electrochemical stability within specific voltage ranges. The Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85 with optimized composition demonstrates an ionic conductivity of 8.2 mS⋅cm−1 at room temperature and exceptional stability in air. The ASSLSBs containing Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85 exhibit impressive specific capacities of 1191 mAh⋅g−1 (0.1C after the initial cycle) and 989 mAh⋅g−1 (0.1C after 100 cycles) at room temperature. Additionally, they demonstrate significant cyclability (83.04 % after 100 cycles) and excellent Coulombic efficiency (>99.5 %). This study presents a novel strategy to promote the application of sulfide electrolytes in fabricating ASSLSBs.

Abstract Image

高性能全固态锂硫电池用SiO2掺杂富卤素银辉石
银矾型硫化物电解质(Li6PS5X, X = Cl, Br, I)已经证明了高性能和安全的全固态锂硫电池(ASSLSBs)的许多好处。这些优点包括它们的快速锂离子传导和与阳极的特殊兼容性。然而,尽管有这些好处,其实施的主要障碍是需要更高的室温离子电导率,改善空气/水分相容性,增强电化学稳定性。在这项研究中,我们提出了一种富卤素银晶(Li5.3PS4.3Cl1.7-xBrx)在室温下获得超快离子电导率。为了增强离子传递通道,通过卤素(Cl/Br)取代阴离子增加结构中的Li空位,优化了位置上阴离子的无序性。采用高能球磨法制备了Li5.3PS4.3Cl0.85Br0.85,室温离子电导率为9.07 mS⋅cm−1。此外,利用SiO2掺杂剂增强固态电解质(Li5.3+ySiyP1-yS4.3-2yO2yCl0.85Br0.85)的晶格结构,以提高其对空气/水分的抵抗能力,并增强其在特定电压范围内的电化学稳定性。优化后的Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85在室温下的离子电导率为8.2 mS⋅cm−1,在空气中具有优异的稳定性。含有Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85的ASSLSBs在室温下的比容量分别为1191 mAh⋅g−1(初始循环后0.1C)和989 mAh⋅g−1(循环100次后0.1C)。此外,它们还具有显著的循环性能(100次循环后达到83.04%)和优异的库仑效率(99.5%)。本研究提出了一种促进硫化物电解质在asslbs制造中的应用的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信