Micro-crosslinked thermoplastic polyurethane foam with ultra-low density, excellent resilience and recycling by supercritical CO2/N2

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiulu Gao, Chenyang Niu, Jiaqi Wang, Yue Wu, Yichong Chen, Ling Zhao, Dongdong Hu
{"title":"Micro-crosslinked thermoplastic polyurethane foam with ultra-low density, excellent resilience and recycling by supercritical CO2/N2","authors":"Xiulu Gao,&nbsp;Chenyang Niu,&nbsp;Jiaqi Wang,&nbsp;Yue Wu,&nbsp;Yichong Chen,&nbsp;Ling Zhao,&nbsp;Dongdong Hu","doi":"10.1016/j.jcou.2025.103061","DOIUrl":null,"url":null,"abstract":"<div><div>Supercritical CO<sub>2</sub> foaming can produce cushioning materials with excellent performance, such as thermoplastic polyurethane (TPU) foam. However, TPU foam generally face the issues of low mechanical resilience and hard recycling. The foaming properties of TPU and the dimensional stability of the product are affected by the molecular structure of the matrix. In this study, the diphenylmethane diisocyanate (MDI) masterbatch, a special modifier for TPU, was selected to prepare modified TPU with micro-crosslinking structure and chain extension. The micro-crosslinking structure limited the large-scale relaxation of molecular chains and enhanced the rheological properties and foaming behavior of TPU. The maximum expansion ratio of TPU foam was increased from 14.5 to 28.3. The shrinkage problem was optimized through CO<sub>2</sub>/N<sub>2</sub> foaming. TPU foams with different stabilized expansion ratios (7–15.9) were produced by changing the N<sub>2</sub> partial pressure. The ultra-high expansion ratio and uniform cell structure provided high relative stress softening (>95 %), low relative hysteresis loss (∆<em>U</em>/<em>U</em>≈5 %) and excellent resilience (∼70.1 %) for TPU foam. This product is promised to realize light-weighting and efficient energy recovery of TPU foam. After a closed-loop sustainable recycling and foaming process, the recyclable RTPU foam still maintained high expansion ratio and low energy loss.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"94 ","pages":"Article 103061"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000459","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercritical CO2 foaming can produce cushioning materials with excellent performance, such as thermoplastic polyurethane (TPU) foam. However, TPU foam generally face the issues of low mechanical resilience and hard recycling. The foaming properties of TPU and the dimensional stability of the product are affected by the molecular structure of the matrix. In this study, the diphenylmethane diisocyanate (MDI) masterbatch, a special modifier for TPU, was selected to prepare modified TPU with micro-crosslinking structure and chain extension. The micro-crosslinking structure limited the large-scale relaxation of molecular chains and enhanced the rheological properties and foaming behavior of TPU. The maximum expansion ratio of TPU foam was increased from 14.5 to 28.3. The shrinkage problem was optimized through CO2/N2 foaming. TPU foams with different stabilized expansion ratios (7–15.9) were produced by changing the N2 partial pressure. The ultra-high expansion ratio and uniform cell structure provided high relative stress softening (>95 %), low relative hysteresis loss (∆U/U≈5 %) and excellent resilience (∼70.1 %) for TPU foam. This product is promised to realize light-weighting and efficient energy recovery of TPU foam. After a closed-loop sustainable recycling and foaming process, the recyclable RTPU foam still maintained high expansion ratio and low energy loss.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信