Rhea Palak Bakshi , Seongjeong Kim , Shangjun Shi , Xiao Wang
{"title":"On the Kauffman bracket skein module of (S1 × S2) # (S1 × S2)","authors":"Rhea Palak Bakshi , Seongjeong Kim , Shangjun Shi , Xiao Wang","doi":"10.1016/j.jalgebra.2025.01.028","DOIUrl":null,"url":null,"abstract":"<div><div>Determining the structure of the Kauffman bracket skein module of all 3-manifolds over the ring of Laurent polynomials <span><math><mi>Z</mi><mo>[</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>±</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span> is a big open problem in skein theory. Very little is known about the skein module of non-prime manifolds over this ring. In this paper, we compute the Kauffman bracket skein module of the 3-manifold <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mi>#</mi><mspace></mspace><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> over the ring <span><math><mi>Z</mi><mo>[</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>±</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span>. We do this by analysing the submodule of handle sliding relations, for which we provide a suitable basis. Along the way we compute the Kauffman bracket skein module of <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mi>#</mi><mspace></mspace><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. We also show that the skein module of <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mspace></mspace><mi>#</mi><mspace></mspace><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> does not split into the sum of free and torsion submodules. Furthermore, we illustrate two families of torsion elements in this skein module.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"673 ","pages":"Pages 103-137"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000869","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the structure of the Kauffman bracket skein module of all 3-manifolds over the ring of Laurent polynomials is a big open problem in skein theory. Very little is known about the skein module of non-prime manifolds over this ring. In this paper, we compute the Kauffman bracket skein module of the 3-manifold over the ring . We do this by analysing the submodule of handle sliding relations, for which we provide a suitable basis. Along the way we compute the Kauffman bracket skein module of . We also show that the skein module of does not split into the sum of free and torsion submodules. Furthermore, we illustrate two families of torsion elements in this skein module.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.