Naoqing formula alleviates cerebral ischemia/reperfusion injury induced inflammatory injury by regulating Csf3 mediated JAK/STAT pathway and macrophage polarization

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Yujun Ye , Zhaowei Rao , Xuexin Xie , Yingxin Liu , Lingling Qiu , Qing Liu , Xuliang Weng , Chengyin Wang , Yiming Bi , Ting Zeng
{"title":"Naoqing formula alleviates cerebral ischemia/reperfusion injury induced inflammatory injury by regulating Csf3 mediated JAK/STAT pathway and macrophage polarization","authors":"Yujun Ye ,&nbsp;Zhaowei Rao ,&nbsp;Xuexin Xie ,&nbsp;Yingxin Liu ,&nbsp;Lingling Qiu ,&nbsp;Qing Liu ,&nbsp;Xuliang Weng ,&nbsp;Chengyin Wang ,&nbsp;Yiming Bi ,&nbsp;Ting Zeng","doi":"10.1016/j.phymed.2025.156626","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Upon cerebral ischemia/reperfusion injury (CIRI), the brain tissue experiences excessive inflammatory responses, which fuel the activation of immune cells, thereby intensifying cellular damage and inflammatory reactions. Naoqing formula (NQ), a traditional Chinese medicinal compound formulated with musk as the primary component, has been extensively utilized in China for the clinical treatment of ischaemic stroke (IS).</div></div><div><h3>Purpose</h3><div>The precise pharmacological mechanism underlying NQ's efficacy in managing IS remains elusive. In this study, we investigate the protective effect and molecular mechanism of NQ against CIRI.</div></div><div><h3>Methods</h3><div>C57BL/6 mice were utilized to investigate the protective effects of NQ (130, 260 and 520mg/kg) against middle cerebral artery occlusion (MCAO) induced CIRI and the underlying mechanism. Employing molecular biology techniques, transcriptomics, proteomics, and network pharmacological analyses, the study assessed the role of NQ in the inflammatory response of neuronal cells by establishing a model for neuronal cell and microglia inflammatory injury induced by oxygen-glucose deprivation/reperfusion (OGD/R) and lipopolysaccharide (LPS) stimulation.</div></div><div><h3>Results</h3><div>NQ demonstrated significant efficacy in mitigating neuronal damage and cerebral infarction induced by CIRI, achieved through the enhancement of cortical blood flow. Transcriptomic and network pharmacological analyses revealed that NQ mitigated the inflammatory damage caused by CIRI by modulating the Csf3-mediated JAK/STAT pathway. Proteomic analysis further corroborated this finding, indicating that NQ reduced the impact of CIRI by regulating macrophage polarization. Notably, in CIRI mice treated with NQ, there was a notable downregulation of Csf3, JAK2, STAT3, and STAT6, along with a co-localization of Csf3 and CD206. These observations suggested that NQ inhibited the activation of the JAK/STAT pathway and exerted its anti-inflammatory effects by orchestrating the transition of macrophages from the M1 phenotype to the M2 phenotype, triggered by Csf3. Consistent with the <em>in vivo</em> findings, NQ also inhibited the activation of the JAK/STAT pathway in neuronal cells and microglial polarization <em>in vitro</em>, thereby protecting against OGD/R- and LPS-induced inflammatory injury.</div></div><div><h3>Conclusion</h3><div>This study confirmed that NQ prevented CIRI induced inflammatory injury by inhibiting Csf3-mediated activation of the JAK/STAT pathway and modulating Csf3-mediated macrophage polarization. This study provided a new perspective on the use of NQ in the treatment of IS.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"140 ","pages":"Article 156626"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325002661","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Upon cerebral ischemia/reperfusion injury (CIRI), the brain tissue experiences excessive inflammatory responses, which fuel the activation of immune cells, thereby intensifying cellular damage and inflammatory reactions. Naoqing formula (NQ), a traditional Chinese medicinal compound formulated with musk as the primary component, has been extensively utilized in China for the clinical treatment of ischaemic stroke (IS).

Purpose

The precise pharmacological mechanism underlying NQ's efficacy in managing IS remains elusive. In this study, we investigate the protective effect and molecular mechanism of NQ against CIRI.

Methods

C57BL/6 mice were utilized to investigate the protective effects of NQ (130, 260 and 520mg/kg) against middle cerebral artery occlusion (MCAO) induced CIRI and the underlying mechanism. Employing molecular biology techniques, transcriptomics, proteomics, and network pharmacological analyses, the study assessed the role of NQ in the inflammatory response of neuronal cells by establishing a model for neuronal cell and microglia inflammatory injury induced by oxygen-glucose deprivation/reperfusion (OGD/R) and lipopolysaccharide (LPS) stimulation.

Results

NQ demonstrated significant efficacy in mitigating neuronal damage and cerebral infarction induced by CIRI, achieved through the enhancement of cortical blood flow. Transcriptomic and network pharmacological analyses revealed that NQ mitigated the inflammatory damage caused by CIRI by modulating the Csf3-mediated JAK/STAT pathway. Proteomic analysis further corroborated this finding, indicating that NQ reduced the impact of CIRI by regulating macrophage polarization. Notably, in CIRI mice treated with NQ, there was a notable downregulation of Csf3, JAK2, STAT3, and STAT6, along with a co-localization of Csf3 and CD206. These observations suggested that NQ inhibited the activation of the JAK/STAT pathway and exerted its anti-inflammatory effects by orchestrating the transition of macrophages from the M1 phenotype to the M2 phenotype, triggered by Csf3. Consistent with the in vivo findings, NQ also inhibited the activation of the JAK/STAT pathway in neuronal cells and microglial polarization in vitro, thereby protecting against OGD/R- and LPS-induced inflammatory injury.

Conclusion

This study confirmed that NQ prevented CIRI induced inflammatory injury by inhibiting Csf3-mediated activation of the JAK/STAT pathway and modulating Csf3-mediated macrophage polarization. This study provided a new perspective on the use of NQ in the treatment of IS.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信