Ondřej Faltus , Milan Jirásek , Martin Horák , Martin Doškář , Ron Peerlings , Jan Zeman , Ondřej Rokoš
{"title":"Towards active stiffness control in pattern-forming pneumatic metamaterials","authors":"Ondřej Faltus , Milan Jirásek , Martin Horák , Martin Doškář , Ron Peerlings , Jan Zeman , Ondřej Rokoš","doi":"10.1016/j.euromechsol.2025.105632","DOIUrl":null,"url":null,"abstract":"<div><div>Pattern-forming metamaterials feature microstructures specifically designed to change the material’s macroscopic properties due to internal instabilities. These can be triggered either by mechanical deformation or, in the case of active materials, by other external stimuli, such as pneumatic actuation. We study a two-dimensional rectangular lattice microstructure which is pneumatically actuated by non-uniform pressure patterns in its voids, and demonstrate that this actuation may lead to different instability patterns. The patterns are associated with a significant reduction in the macroscopic stiffness of the material. The magnitude of this reduction can be controlled by different arrangements of the pressure actuation, thus choosing the precise buckled shape of the microstructure. We develop an analytical model and complement it with computational tests on a two-dimensional plane-strain finite element model. We explain the phenomenon and discuss ways of further developing the concept to actively control the stiffness of materials and structures.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"112 ","pages":"Article 105632"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S099775382500066X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pattern-forming metamaterials feature microstructures specifically designed to change the material’s macroscopic properties due to internal instabilities. These can be triggered either by mechanical deformation or, in the case of active materials, by other external stimuli, such as pneumatic actuation. We study a two-dimensional rectangular lattice microstructure which is pneumatically actuated by non-uniform pressure patterns in its voids, and demonstrate that this actuation may lead to different instability patterns. The patterns are associated with a significant reduction in the macroscopic stiffness of the material. The magnitude of this reduction can be controlled by different arrangements of the pressure actuation, thus choosing the precise buckled shape of the microstructure. We develop an analytical model and complement it with computational tests on a two-dimensional plane-strain finite element model. We explain the phenomenon and discuss ways of further developing the concept to actively control the stiffness of materials and structures.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.