Energy harvesting performance of fluid-immersed bimorph FG-GPLRC sandwich microplates in thermal gradient and magnetic field environments: A modified strain gradient theory approach

IF 4.4 2区 工程技术 Q1 MECHANICS
Pouyan Roodgar Saffari , Peyman Roodgar Saffari , Teerapong Senjuntichai , Sina Askarinejad , Kazem Ghabraie , Chanachai Thongchom
{"title":"Energy harvesting performance of fluid-immersed bimorph FG-GPLRC sandwich microplates in thermal gradient and magnetic field environments: A modified strain gradient theory approach","authors":"Pouyan Roodgar Saffari ,&nbsp;Peyman Roodgar Saffari ,&nbsp;Teerapong Senjuntichai ,&nbsp;Sina Askarinejad ,&nbsp;Kazem Ghabraie ,&nbsp;Chanachai Thongchom","doi":"10.1016/j.euromechsol.2025.105635","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel investigation into the energy harvesting capabilities of fluid-immersed bimorph functionally graded graphene nanoplatelet reinforced composite (FG-GPLRC) sandwich microplates under combined thermal gradient and magnetic field environments, considering various boundary conditions. To address the critical research gap in understanding size-dependent behavior of such systems, a theoretical framework combining modified strain gradient theory (MSGT) with first-order shear deformation theory (FSDT) is developed. The fluid-structure interaction forces are obtained through Navier-Stokes equations, while Hamilton's principle and Gauss's law are employed to derive the governing equations. Both the Halpin-Tsai micromechanical model and the law of mixtures are utilized to predict the effective material properties of FG-GPLRC with different graphene platelet distributions. The analysis reveals that series electrical configurations yield superior voltage and power output compared to parallel configurations in fluid-immersed environments. It is also shown that graphene platelet distribution patterns significantly influence energy harvesting efficiency, and thermal gradient effects substantially impact the system's performance. Comprehensive parametric analyses are provided examining the effects of piezoelectric connection types, boundary conditions, graphene distribution and loading, temperature variations, fluid depth, electrical load, and geometric dimensions on energy harvesting performance. The results of these analyses advance the understanding of micro-scale energy harvesting systems and provide valuable design guidelines for future applications.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"112 ","pages":"Article 105635"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000695","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel investigation into the energy harvesting capabilities of fluid-immersed bimorph functionally graded graphene nanoplatelet reinforced composite (FG-GPLRC) sandwich microplates under combined thermal gradient and magnetic field environments, considering various boundary conditions. To address the critical research gap in understanding size-dependent behavior of such systems, a theoretical framework combining modified strain gradient theory (MSGT) with first-order shear deformation theory (FSDT) is developed. The fluid-structure interaction forces are obtained through Navier-Stokes equations, while Hamilton's principle and Gauss's law are employed to derive the governing equations. Both the Halpin-Tsai micromechanical model and the law of mixtures are utilized to predict the effective material properties of FG-GPLRC with different graphene platelet distributions. The analysis reveals that series electrical configurations yield superior voltage and power output compared to parallel configurations in fluid-immersed environments. It is also shown that graphene platelet distribution patterns significantly influence energy harvesting efficiency, and thermal gradient effects substantially impact the system's performance. Comprehensive parametric analyses are provided examining the effects of piezoelectric connection types, boundary conditions, graphene distribution and loading, temperature variations, fluid depth, electrical load, and geometric dimensions on energy harvesting performance. The results of these analyses advance the understanding of micro-scale energy harvesting systems and provide valuable design guidelines for future applications.
热梯度和磁场环境下液浸双晶片FG-GPLRC夹芯微板的能量收集性能:一种修正应变梯度理论方法
本研究在考虑不同边界条件的情况下,对热梯度和磁场联合环境下,液浸双晶功能梯度石墨烯纳米板增强复合材料(FG-GPLRC)夹层微板的能量收集能力进行了新的研究。为了解决在理解此类系统的尺寸依赖行为方面的关键研究空白,提出了将修正应变梯度理论(MSGT)与一阶剪切变形理论(FSDT)相结合的理论框架。流固耦合力由Navier-Stokes方程求得,控制方程由Hamilton原理和Gauss定律推导。利用Halpin-Tsai微观力学模型和混合定律预测了石墨烯血小板分布不同的FG-GPLRC的有效材料性能。分析表明,在流体浸没环境中,与并联配置相比,串联电气配置可产生更高的电压和功率输出。石墨烯血小板分布模式显著影响能量收集效率,热梯度效应显著影响系统性能。提供了全面的参数分析,检查压电连接类型,边界条件,石墨烯分布和负载,温度变化,流体深度,电负载和几何尺寸对能量收集性能的影响。这些分析的结果促进了对微尺度能量收集系统的理解,并为未来的应用提供了有价值的设计指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信