{"title":"Representations of the small quasi-quantum group","authors":"Hua Sun , Hui-Xiang Chen , Yinhuo Zhang","doi":"10.1016/j.jalgebra.2025.02.025","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the representation theory of the small quantum group <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span> and the small quasi-quantum group <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where <em>q</em> is a primitive <em>n</em>-th root of unity and <span><math><mi>n</mi><mo>></mo><mn>2</mn></math></span> is odd. All finite dimensional indecomposable <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>-modules are described and classified. Moreover, the decomposition rules for the tensor products of <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>-modules are given. Finally, we describe the structures of the projective class ring <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> and the Green ring <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>. We show that <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is isomorphic to a subring of <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, and the stable Green rings <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are isomorphic.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"673 ","pages":"Pages 188-221"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000948","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the representation theory of the small quantum group and the small quasi-quantum group , where q is a primitive n-th root of unity and is odd. All finite dimensional indecomposable -modules are described and classified. Moreover, the decomposition rules for the tensor products of -modules are given. Finally, we describe the structures of the projective class ring and the Green ring . We show that is isomorphic to a subring of , and the stable Green rings and are isomorphic.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.