Broadband sound reduction in space-coiling ventilation structures with microperforated shells

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
Yonghui Zhang, Lei Zhang, Youdong Duan, Xiaoming Zhou
{"title":"Broadband sound reduction in space-coiling ventilation structures with microperforated shells","authors":"Yonghui Zhang,&nbsp;Lei Zhang,&nbsp;Youdong Duan,&nbsp;Xiaoming Zhou","doi":"10.1016/j.apacoust.2025.110676","DOIUrl":null,"url":null,"abstract":"<div><div>Ventilation structures supported by the Fano-like interference can act as high-performance sound silencers, yet the bandwidth gets limited eventually by coexisting resonant transmission. In this work, we focus on the space-coiling ventilation structure, and overcome the limitation by introducing a cylindrical shell made of microperforated panels (MPPs) in between the channel and ventilation pipe. The underlying mechanism is due to the resonance-induced field intensity enhancement within coiling channels, which can produce a significant pressure difference on both sides of the MPP to damp resonant acoustic transmission. Based on this behavior, broadband sound reduction with the bandwidth exceeding an octave can be achieved when two such structural elements are cascaded. Enhanced acoustic damping by MPPs and broadband sound reduction in bi-cell structures are numerically analyzed and validated experimentally.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"235 ","pages":"Article 110676"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25001483","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ventilation structures supported by the Fano-like interference can act as high-performance sound silencers, yet the bandwidth gets limited eventually by coexisting resonant transmission. In this work, we focus on the space-coiling ventilation structure, and overcome the limitation by introducing a cylindrical shell made of microperforated panels (MPPs) in between the channel and ventilation pipe. The underlying mechanism is due to the resonance-induced field intensity enhancement within coiling channels, which can produce a significant pressure difference on both sides of the MPP to damp resonant acoustic transmission. Based on this behavior, broadband sound reduction with the bandwidth exceeding an octave can be achieved when two such structural elements are cascaded. Enhanced acoustic damping by MPPs and broadband sound reduction in bi-cell structures are numerically analyzed and validated experimentally.
带微孔壳的空间卷绕通风结构的宽带降噪
由类似法诺的干扰支撑的通风结构可以作为高性能的消声器,但最终由于共存的谐振传输而限制了带宽。在这项工作中,我们专注于空间卷曲通风结构,并通过在通道和通风管道之间引入由微穿孔板(mpp)制成的圆柱形外壳来克服这一限制。潜在的机制是由于线圈通道内共振诱导的场强增强,这可以在MPP两侧产生显着的压差来抑制共振声传输。基于这种行为,当两个这样的结构元件级联时,可以实现带宽超过一个八度的宽带降噪。本文对双胞结构中mpp增强声阻尼和宽带降噪进行了数值分析和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信