Non-contacting laser-ultrasonic fouling detection on steel pipes

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Joonas Mustonen , Denys Iablonskyi , Shayan Gharib , Joonas Suorsa , Martin Weber , Arto Klami , Edward Hæggström , Ari Salmi
{"title":"Non-contacting laser-ultrasonic fouling detection on steel pipes","authors":"Joonas Mustonen ,&nbsp;Denys Iablonskyi ,&nbsp;Shayan Gharib ,&nbsp;Joonas Suorsa ,&nbsp;Martin Weber ,&nbsp;Arto Klami ,&nbsp;Edward Hæggström ,&nbsp;Ari Salmi","doi":"10.1016/j.ultras.2025.107617","DOIUrl":null,"url":null,"abstract":"<div><div>In many industrial processes, accumulation of fouling can lead to decreased production efficiency by weakening the flow in pipes or causing additional friction on the ships’ hulls. To detect the fouled areas for descaling, ultrasonic guided waves (UGWs) can be utilized. Usually, this is carried out by coupling phased array collars of contact transducers onto the pipe. This can cause problems if the coupling changes over time, the temperature of the pipe is too high or the sensors need to be relocated. Here, we demonstrate how fouling can be detected without contact sensors, by using a pulse laser and a laser Doppler vibrometer. Furthermore, by employing broadband laser excitation, we are able to define the fouling attenuation coefficient and investigate the frequency dependencies of fouling-induced attenuation.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"151 ","pages":"Article 107617"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2500054X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In many industrial processes, accumulation of fouling can lead to decreased production efficiency by weakening the flow in pipes or causing additional friction on the ships’ hulls. To detect the fouled areas for descaling, ultrasonic guided waves (UGWs) can be utilized. Usually, this is carried out by coupling phased array collars of contact transducers onto the pipe. This can cause problems if the coupling changes over time, the temperature of the pipe is too high or the sensors need to be relocated. Here, we demonstrate how fouling can be detected without contact sensors, by using a pulse laser and a laser Doppler vibrometer. Furthermore, by employing broadband laser excitation, we are able to define the fouling attenuation coefficient and investigate the frequency dependencies of fouling-induced attenuation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信