Yu-Shu Kuo , Ping-Hsien Chin , Yu-Hsiu Tseng , Chao-Ming Chi , Shang-Chun Chang , Charles Aubeny
{"title":"Shaking table experiments to investigate the seismic response of drag embedded anchors","authors":"Yu-Shu Kuo , Ping-Hsien Chin , Yu-Hsiu Tseng , Chao-Ming Chi , Shang-Chun Chang , Charles Aubeny","doi":"10.1016/j.soildyn.2025.109364","DOIUrl":null,"url":null,"abstract":"<div><div>Drag embedded anchors (DEA) are widely used in offshore engineering. The anchor foundations are installed in the seabed through the drag force applied by the mooring line and provide holding capacity to marine structures. Offshore wind farms in Taiwan are located in active earthquake zones, where a considerable amount of sandy soil at the upper layer of seabed results in a high potential for soil liquefaction. Since DEA are a promising option for floating wind turbines, this study conducted a shaking table test on two 1/30-scale anchors in medium dense sand to investigate the dynamic behavior of DEA during earthquakes and after excess pore water pressure dissipation. The test results reveal no significant impact on the orientation of the anchors, which could be due to the uplift force from the excess pore water pressure acting on the fluke. After the excess pore water pressure dissipates, the soil density increases, and the fluke angle becomes favorable, thus increasing the anchor's holding capacity when subjected to additional drag.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109364"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drag embedded anchors (DEA) are widely used in offshore engineering. The anchor foundations are installed in the seabed through the drag force applied by the mooring line and provide holding capacity to marine structures. Offshore wind farms in Taiwan are located in active earthquake zones, where a considerable amount of sandy soil at the upper layer of seabed results in a high potential for soil liquefaction. Since DEA are a promising option for floating wind turbines, this study conducted a shaking table test on two 1/30-scale anchors in medium dense sand to investigate the dynamic behavior of DEA during earthquakes and after excess pore water pressure dissipation. The test results reveal no significant impact on the orientation of the anchors, which could be due to the uplift force from the excess pore water pressure acting on the fluke. After the excess pore water pressure dissipates, the soil density increases, and the fluke angle becomes favorable, thus increasing the anchor's holding capacity when subjected to additional drag.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.