Johannes Sieberer , Albert Rancu , Nancy Park , Shelby Desroches , Armita R. Manafzadeh , Steven Tommasini , Daniel H. Wiznia , John Fulkerson
{"title":"Patellar tilt calculation utilizing artificial intelligence on CT knee imaging","authors":"Johannes Sieberer , Albert Rancu , Nancy Park , Shelby Desroches , Armita R. Manafzadeh , Steven Tommasini , Daniel H. Wiznia , John Fulkerson","doi":"10.1016/j.knee.2025.02.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D objects. This study aims to measure patellar tilt in 3D and automate it by utilizing a commercial AI algorithm for landmark placement.</div></div><div><h3>Methods</h3><div>CT-scans of 30 patients with at least two dislocation events and 30 controls without patellofemoral disease were acquired. Patellar tilt was measured using three different methods: the established method, and by calculating the angle between 3D-landmarks placed by either a human rater or an AI algorithm. Correlations between the three measurements were calculated using interclass correlation coefficients, and differences with a Kruskal-Wallis test. Significant differences of means between patients and controls were calculated using Mann-Whitney U tests. Significance was assumed at 0.05 adjusted with the Bonferroni method.</div></div><div><h3>Results</h3><div>No significant differences (overall: <em>p</em> = 0.10, patients: 0.51, controls: 0.79) between methods were found. Predicted ICC between the methods ranged from 0.86 to 0.90 with a 95% confidence interval of 0.77–0.94. Differences between patients and controls were significant (<em>p</em> < 0.001) for all three methods.</div></div><div><h3>Conclusion</h3><div>The study offers an alternative 3D approach for calculating patellar tilt comparable to traditional, manual measurements. Furthermore, this analysis offers evidence that a commercially available software can identify the necessary anatomical landmarks for patellar tilt calculation, offering a potential pathway to increased automation of surgical decision-making metrics.</div></div>","PeriodicalId":56110,"journal":{"name":"Knee","volume":"54 ","pages":"Pages 217-221"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096801602500033X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D objects. This study aims to measure patellar tilt in 3D and automate it by utilizing a commercial AI algorithm for landmark placement.
Methods
CT-scans of 30 patients with at least two dislocation events and 30 controls without patellofemoral disease were acquired. Patellar tilt was measured using three different methods: the established method, and by calculating the angle between 3D-landmarks placed by either a human rater or an AI algorithm. Correlations between the three measurements were calculated using interclass correlation coefficients, and differences with a Kruskal-Wallis test. Significant differences of means between patients and controls were calculated using Mann-Whitney U tests. Significance was assumed at 0.05 adjusted with the Bonferroni method.
Results
No significant differences (overall: p = 0.10, patients: 0.51, controls: 0.79) between methods were found. Predicted ICC between the methods ranged from 0.86 to 0.90 with a 95% confidence interval of 0.77–0.94. Differences between patients and controls were significant (p < 0.001) for all three methods.
Conclusion
The study offers an alternative 3D approach for calculating patellar tilt comparable to traditional, manual measurements. Furthermore, this analysis offers evidence that a commercially available software can identify the necessary anatomical landmarks for patellar tilt calculation, offering a potential pathway to increased automation of surgical decision-making metrics.
期刊介绍:
The Knee is an international journal publishing studies on the clinical treatment and fundamental biomechanical characteristics of this joint. The aim of the journal is to provide a vehicle relevant to surgeons, biomedical engineers, imaging specialists, materials scientists, rehabilitation personnel and all those with an interest in the knee.
The topics covered include, but are not limited to:
• Anatomy, physiology, morphology and biochemistry;
• Biomechanical studies;
• Advances in the development of prosthetic, orthotic and augmentation devices;
• Imaging and diagnostic techniques;
• Pathology;
• Trauma;
• Surgery;
• Rehabilitation.