Anna Uta Rysop , Kathleen Anne Williams , Lea-Maria Schmitt , Marcus Meinzer , Jonas Obleser , Gesa Hartwigsen
{"title":"Aging modulates large-scale neural network interactions during speech comprehension","authors":"Anna Uta Rysop , Kathleen Anne Williams , Lea-Maria Schmitt , Marcus Meinzer , Jonas Obleser , Gesa Hartwigsen","doi":"10.1016/j.neurobiolaging.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming words (i.e., predictability gain)—a process associated with the domain-specific semantic network. When no such context can be used, speech comprehension in challenging listening conditions relies on cognitive control functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre-selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific and domain-general networks interact during speech comprehension in noise and how this may change across the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network interactions during sentence comprehension under noisy conditions with varying predictability in healthy young and older listeners. Relative to young listeners, older adults showed increased task-related activity in several domain-general networks but reduced between-network connectivity. Across groups, higher predictability was associated with increased positive coupling between semantic and attention networks and increased negative coupling between semantic and control networks. These results highlight the complex interplay between the semantic network and several domain-general networks underlying the predictability gain. The observed differences in connectivity profiles with age inform the current debate on whether age-related changes in neural activity and functional connectivity reflect compensation or dedifferentiation.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"150 ","pages":"Pages 109-121"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025000296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming words (i.e., predictability gain)—a process associated with the domain-specific semantic network. When no such context can be used, speech comprehension in challenging listening conditions relies on cognitive control functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre-selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific and domain-general networks interact during speech comprehension in noise and how this may change across the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network interactions during sentence comprehension under noisy conditions with varying predictability in healthy young and older listeners. Relative to young listeners, older adults showed increased task-related activity in several domain-general networks but reduced between-network connectivity. Across groups, higher predictability was associated with increased positive coupling between semantic and attention networks and increased negative coupling between semantic and control networks. These results highlight the complex interplay between the semantic network and several domain-general networks underlying the predictability gain. The observed differences in connectivity profiles with age inform the current debate on whether age-related changes in neural activity and functional connectivity reflect compensation or dedifferentiation.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.