Experimental study on the influence of layer number and initial ignition location on burning characteristic of multi-layer cable fire

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL
Jie Chen , Shengze Qin , Xiaolong Zhao , Yunhe Tong , Minghao Fan
{"title":"Experimental study on the influence of layer number and initial ignition location on burning characteristic of multi-layer cable fire","authors":"Jie Chen ,&nbsp;Shengze Qin ,&nbsp;Xiaolong Zhao ,&nbsp;Yunhe Tong ,&nbsp;Minghao Fan","doi":"10.1016/j.firesaf.2025.104368","DOIUrl":null,"url":null,"abstract":"<div><div>A series of multi-layer cable fire tests were conducted to explore the effects of cable layer number and initial ignition location on the burning characteristics and propagation behavior. Characteristic parameters, such as flame morphological characteristics, flame spread behavior, temperature profile and heat release rate (HRR) were determined. Flame height and HRR was significantly increased with the increase of cable layer number. Within the current limited experimental range, maximum flame height and HRR of multi-layer cable fire scenario reached 640 cm and 1380 kW, respectively. Also, initial ignition location had obvious effect on multi-layer cable fire propagation pattern. In cable fire scenarios, flame spread exhibits upward, downward, and horizontal directions when ignition initiates at lower or upper layers. However, mid-layer ignition introduces a critical thermal melt droplet-driven propagation mechanism. Molten droplets are classified into four morphological types, and their accumulation may lead to pool-like fires. This work was performed to deepen our fundamental understanding of the combustion characteristics of large-scale multi-layer cable fires and provide some reference for related fire safety issues.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104368"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of multi-layer cable fire tests were conducted to explore the effects of cable layer number and initial ignition location on the burning characteristics and propagation behavior. Characteristic parameters, such as flame morphological characteristics, flame spread behavior, temperature profile and heat release rate (HRR) were determined. Flame height and HRR was significantly increased with the increase of cable layer number. Within the current limited experimental range, maximum flame height and HRR of multi-layer cable fire scenario reached 640 cm and 1380 kW, respectively. Also, initial ignition location had obvious effect on multi-layer cable fire propagation pattern. In cable fire scenarios, flame spread exhibits upward, downward, and horizontal directions when ignition initiates at lower or upper layers. However, mid-layer ignition introduces a critical thermal melt droplet-driven propagation mechanism. Molten droplets are classified into four morphological types, and their accumulation may lead to pool-like fires. This work was performed to deepen our fundamental understanding of the combustion characteristics of large-scale multi-layer cable fires and provide some reference for related fire safety issues.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信