Brassinosteroids in maize: Biosynthesis, signaling pathways, and impacts on agronomic traits

IF 4.5 Q1 PLANT SCIENCES
Jingjie Zhang , Shiyi Wu , Miao Wang , Jinke Chang , Xiaopeng Li
{"title":"Brassinosteroids in maize: Biosynthesis, signaling pathways, and impacts on agronomic traits","authors":"Jingjie Zhang ,&nbsp;Shiyi Wu ,&nbsp;Miao Wang ,&nbsp;Jinke Chang ,&nbsp;Xiaopeng Li","doi":"10.1016/j.cpb.2025.100465","DOIUrl":null,"url":null,"abstract":"<div><div>Maize is one of the most widely cultivated crops for producing human food, animal feed, and ethanol biofuel. Recent studies have indicated that brassinosteroids (BRs), essential phytohormones for plant growth, development and stress adaptation across plant species, significantly regulate several maize agronomic traits, such as plant height, leaf angle, reproductive development and kernel size. So far, most previous reviews have mainly focused on discussing molecular functions of BRs in model plants like Arabidopsis and rice. A detailed summary of BRs in maize, however, has not yet been presented. In this review, we provide a comprehensive overview of the biosynthesis and signaling transduction pathways of BRs, and summarize the roles of BRs in regulating some agronomic traits such as plant architecture and kernel yield in maize. We also discuss potential opportunities and challenges associated with leveraging BR-centered molecular design strategies for maize improvement.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"42 ","pages":"Article 100465"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Maize is one of the most widely cultivated crops for producing human food, animal feed, and ethanol biofuel. Recent studies have indicated that brassinosteroids (BRs), essential phytohormones for plant growth, development and stress adaptation across plant species, significantly regulate several maize agronomic traits, such as plant height, leaf angle, reproductive development and kernel size. So far, most previous reviews have mainly focused on discussing molecular functions of BRs in model plants like Arabidopsis and rice. A detailed summary of BRs in maize, however, has not yet been presented. In this review, we provide a comprehensive overview of the biosynthesis and signaling transduction pathways of BRs, and summarize the roles of BRs in regulating some agronomic traits such as plant architecture and kernel yield in maize. We also discuss potential opportunities and challenges associated with leveraging BR-centered molecular design strategies for maize improvement.
玉米中的油菜素内酯:生物合成、信号通路和对农艺性状的影响
玉米是用于生产人类食品、动物饲料和乙醇生物燃料的最广泛种植的作物之一。近年来的研究表明,油菜素内酯(BRs)是植物生长发育和逆境适应所必需的植物激素,对玉米的株高、叶角、生殖发育和籽粒大小等农艺性状具有显著调控作用。目前,对BRs在拟南芥、水稻等模式植物中的分子功能研究较多。然而,目前还没有关于玉米BRs的详细总结。本文综述了BRs的生物合成和信号转导途径,并对BRs在调控玉米植株结构和籽粒产量等农艺性状中的作用进行了综述。我们还讨论了利用以br为中心的分子设计策略进行玉米改良的潜在机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信