{"title":"Genome editing in hymenoptera","authors":"Hamish A. Salvesen, Peter K. Dearden","doi":"10.1016/j.ibmb.2025.104300","DOIUrl":null,"url":null,"abstract":"<div><div>The application of genome editing tools in Hymenoptera has transformative potential for functional genetics and understanding their unique biology. Hymenoptera comprise one of the most diverse Orders of animals, and the development of methods for efficiently creating precise genome modifications could have applications in conservation, pest management and agriculture. To date, sex determination, DNA methylation, taste and smell sensory systems as well as phenotypic markers have been selected for gene editing investigations. From these data, insights into eusociality, the nature of haplodiploidy and the complex communication systems that Hymenoptera possess have provided an understanding of their evolutionary history that has led them to become so diverse and successful.</div><div>Insights from these functional genetics analyses have been supported by the ever-improving suite of CRIPSR tools and further expansion will allow more specific biological hypotheses to be tested and applications beyond the lab. Looking ahead, genome editing tools have potential for Hymenopteran applications in modifying biocontrol agents of agricultural pests and for use in managing invasive species through the development of technologies such as gene drives. This review provides accessibility to information regarding the status of Hymenopteran genome editing, intending to support the considered development of CRISPR tools in novel species as well as innovation and refinement of methods in species in which it has already been achieved.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"180 ","pages":"Article 104300"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096517482500044X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of genome editing tools in Hymenoptera has transformative potential for functional genetics and understanding their unique biology. Hymenoptera comprise one of the most diverse Orders of animals, and the development of methods for efficiently creating precise genome modifications could have applications in conservation, pest management and agriculture. To date, sex determination, DNA methylation, taste and smell sensory systems as well as phenotypic markers have been selected for gene editing investigations. From these data, insights into eusociality, the nature of haplodiploidy and the complex communication systems that Hymenoptera possess have provided an understanding of their evolutionary history that has led them to become so diverse and successful.
Insights from these functional genetics analyses have been supported by the ever-improving suite of CRIPSR tools and further expansion will allow more specific biological hypotheses to be tested and applications beyond the lab. Looking ahead, genome editing tools have potential for Hymenopteran applications in modifying biocontrol agents of agricultural pests and for use in managing invasive species through the development of technologies such as gene drives. This review provides accessibility to information regarding the status of Hymenopteran genome editing, intending to support the considered development of CRISPR tools in novel species as well as innovation and refinement of methods in species in which it has already been achieved.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.