Transferability of machine-learning interatomic potential to α-Fe nanocrystalline deformation

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Kazuma Ito , Tatsuya Yokoi , Katsutoshi Hyodo , Hideki Mori
{"title":"Transferability of machine-learning interatomic potential to α-Fe nanocrystalline deformation","authors":"Kazuma Ito ,&nbsp;Tatsuya Yokoi ,&nbsp;Katsutoshi Hyodo ,&nbsp;Hideki Mori","doi":"10.1016/j.ijmecsci.2025.110132","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the mechanical properties of polycrystalline metallic materials, understanding the elementary processes involved in their deformation at the atomic level is crucial. In this study, firstly, we evaluate the transferability of the recently proposed α-Fe machine-learning interatomic potential (MLIP), constructed from mechanically generated training data based on crystal space groups, to the tensile deformation process of nanopolycrystals. The transferability was evaluated by comparing the physical properties and lattice defect formation energies, which are important in the deformation behavior of nanopolycrystals, with those obtained from density functional theory (DFT) and by comprehensively calculating extrapolation grades based on active learning methods for the local atomic environment in the nanopolycrystal during tensile deformation. These evaluations demonstrate the superior transferability of the MLIP to the tensile deformation of the nanopolycrystals. Furthermore, large-scale molecular dynamics calculations were performed using the MLIP and the most commonly used embedded atom method (EAM) potential to investigate the effect of grain size on the deformation behavior of α-Fe polycrystals and the effect of interatomic potentials on them. The uniaxial tensile deformation behavior of the nanopolycrystals obtained from EAM was qualitatively consistent with that obtained from MLIP. This result supports the results of many studies conducted using EAM and is an important conclusion considering the high computational cost of the MLIP. Furthermore, the construction method for the MLIP used in this study is applicable to other metals. Therefore, this study considerably contributes to the understanding and material design of various metallic materials through the construction of highly accurate MLIPs.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110132"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002188","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the mechanical properties of polycrystalline metallic materials, understanding the elementary processes involved in their deformation at the atomic level is crucial. In this study, firstly, we evaluate the transferability of the recently proposed α-Fe machine-learning interatomic potential (MLIP), constructed from mechanically generated training data based on crystal space groups, to the tensile deformation process of nanopolycrystals. The transferability was evaluated by comparing the physical properties and lattice defect formation energies, which are important in the deformation behavior of nanopolycrystals, with those obtained from density functional theory (DFT) and by comprehensively calculating extrapolation grades based on active learning methods for the local atomic environment in the nanopolycrystal during tensile deformation. These evaluations demonstrate the superior transferability of the MLIP to the tensile deformation of the nanopolycrystals. Furthermore, large-scale molecular dynamics calculations were performed using the MLIP and the most commonly used embedded atom method (EAM) potential to investigate the effect of grain size on the deformation behavior of α-Fe polycrystals and the effect of interatomic potentials on them. The uniaxial tensile deformation behavior of the nanopolycrystals obtained from EAM was qualitatively consistent with that obtained from MLIP. This result supports the results of many studies conducted using EAM and is an important conclusion considering the high computational cost of the MLIP. Furthermore, the construction method for the MLIP used in this study is applicable to other metals. Therefore, this study considerably contributes to the understanding and material design of various metallic materials through the construction of highly accurate MLIPs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信