Electrochemical analysis of 5-Nitro-2-furaldehyde semicarbazone as a mild steel corrosion inhibitor in corrosive solution: An EIS, adsorption and SEM study

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dalia M. Jamil , H.S. Aljibori , Ahmed Alamiery
{"title":"Electrochemical analysis of 5-Nitro-2-furaldehyde semicarbazone as a mild steel corrosion inhibitor in corrosive solution: An EIS, adsorption and SEM study","authors":"Dalia M. Jamil ,&nbsp;H.S. Aljibori ,&nbsp;Ahmed Alamiery","doi":"10.1016/j.rechem.2025.102193","DOIUrl":null,"url":null,"abstract":"<div><div>The results obtained from EIS, weight loss measurements, adsorption isotherms, and SEM were used to investigate the electrochemical behavior of NFS as a corrosion inhibitor for mild steel in 1.0 M HCl. The inhibition efficiency of NFS the electrode reaction was found to increase with NFS concentration up to a maximum value of 0.5 mM with 92.1 % inhibition efficiency, based on mass loss measurements. The findings revealed that the inhibitive performance of the investigated inhibitor was slightly higher at higher temperatures, indicating improved better protection at elevated thermal conditions. Based on the analysis of the adsorption isotherm studies on mild steel, the findings revealed that the adsorption of NFS can be follows the Langmuir isotherm model, although both chemisorption and physisorption mechanisms were observed. Analysis of the surface morphology by SEM also showed a smooth and resistant surface with less corrosion when NFS is present consistent with previous findings of NFS as a corrosion inhibitor. The inhibition mechanism was further explained in more detail and has given a good understanding regarding the behavior of NFS molecules and steel surface. Therefore, the results demonstrated in this work show that NFS has the potential for acting as a protective barrier against the steel corrosion in corrosive solution.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102193"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625001766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The results obtained from EIS, weight loss measurements, adsorption isotherms, and SEM were used to investigate the electrochemical behavior of NFS as a corrosion inhibitor for mild steel in 1.0 M HCl. The inhibition efficiency of NFS the electrode reaction was found to increase with NFS concentration up to a maximum value of 0.5 mM with 92.1 % inhibition efficiency, based on mass loss measurements. The findings revealed that the inhibitive performance of the investigated inhibitor was slightly higher at higher temperatures, indicating improved better protection at elevated thermal conditions. Based on the analysis of the adsorption isotherm studies on mild steel, the findings revealed that the adsorption of NFS can be follows the Langmuir isotherm model, although both chemisorption and physisorption mechanisms were observed. Analysis of the surface morphology by SEM also showed a smooth and resistant surface with less corrosion when NFS is present consistent with previous findings of NFS as a corrosion inhibitor. The inhibition mechanism was further explained in more detail and has given a good understanding regarding the behavior of NFS molecules and steel surface. Therefore, the results demonstrated in this work show that NFS has the potential for acting as a protective barrier against the steel corrosion in corrosive solution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信