Link between crustal thickness and Moho transition zone at 9°N East Pacific Rise

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Zhikai Wang , Satish C. Singh , J. Pablo Canales
{"title":"Link between crustal thickness and Moho transition zone at 9°N East Pacific Rise","authors":"Zhikai Wang ,&nbsp;Satish C. Singh ,&nbsp;J. Pablo Canales","doi":"10.1016/j.epsl.2025.119309","DOIUrl":null,"url":null,"abstract":"<div><div>Oceanic crust is formed from basaltic melt produced by decompression melting due to mantle upwelling at mid-ocean ridges. This crust is separated from the underlying mantle either by a sharp Mohorovičić (Moho) discontinuity or a thick Moho transition zone (MTZ). Determining the relationship between the oceanic crustal structure and the MTZ is critical for understanding the crustal accretion processes at mid-ocean ridges. However, this relationship remains elusive due to the lack of high-resolution velocity model of the oceanic crust and MTZ. Here, we present result from the application of full waveform inversion to wide-angle seismic data acquired over a young oceanic crust near the 9°N East Pacific Rise, allowing us to obtain the crustal and MTZ thicknesses along a ∼70 km-long segment. We find that the crustal thickness and the MTZ thickness vary along the segment and they are inversely correlated, although the total cumulative thickness does not vary much along the profile. These variations could be attributed to the different melt migration efficiency or the variations in mantle thermal/chemical structure, indicating mantle heterogeneity along the ridge.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"658 ","pages":"Article 119309"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25001086","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Oceanic crust is formed from basaltic melt produced by decompression melting due to mantle upwelling at mid-ocean ridges. This crust is separated from the underlying mantle either by a sharp Mohorovičić (Moho) discontinuity or a thick Moho transition zone (MTZ). Determining the relationship between the oceanic crustal structure and the MTZ is critical for understanding the crustal accretion processes at mid-ocean ridges. However, this relationship remains elusive due to the lack of high-resolution velocity model of the oceanic crust and MTZ. Here, we present result from the application of full waveform inversion to wide-angle seismic data acquired over a young oceanic crust near the 9°N East Pacific Rise, allowing us to obtain the crustal and MTZ thicknesses along a ∼70 km-long segment. We find that the crustal thickness and the MTZ thickness vary along the segment and they are inversely correlated, although the total cumulative thickness does not vary much along the profile. These variations could be attributed to the different melt migration efficiency or the variations in mantle thermal/chemical structure, indicating mantle heterogeneity along the ridge.
东太平洋隆起9°N地壳厚度与莫霍过渡带的联系
洋壳是由洋中脊地幔上涌减压熔融产生的玄武岩熔体形成的。这个地壳是由一个尖锐的莫霍-维伊克(Moho)不连续或一个厚的莫霍过渡带(MTZ)与下面的地幔分开的。确定海洋地壳结构与MTZ之间的关系,对于理解洋中脊地壳吸积过程具有重要意义。然而,由于缺乏高分辨率的海洋地壳和MTZ速度模型,这种关系仍然难以捉摸。在这里,我们介绍了将全波形反演应用于东太平洋隆起9°N附近的年轻海洋地壳上的广角地震数据的结果,使我们能够获得沿~ 70 km长段的地壳和MTZ厚度。研究发现,地壳厚度和MTZ厚度沿剖面呈负相关关系,但总累积厚度沿剖面变化不大。这些变化可归因于不同的熔体迁移效率或地幔热化学结构的变化,表明了地幔沿脊的非均质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信