Ju Guan , Wei Han , Qibin Liu , Fan Jiao , Wenjing Ma
{"title":"Proposal and analysis of an energy storage system integrated hydrogen energy storage and Carnot battery","authors":"Ju Guan , Wei Han , Qibin Liu , Fan Jiao , Wenjing Ma","doi":"10.1016/j.enconman.2025.119734","DOIUrl":null,"url":null,"abstract":"<div><div>As renewable energy capacity continues to surge, the volatility and intermittency of its generation poses a mismatch between supply and demand when aligned with the fluctuating user load. Consequently, there’s a pressing need for the development of large-scale, high-efficiency, rapid-response, long-duration energy storage system. This study presents a novel integrated energy storage system combining hydrogen energy storage and Carnot battery. Carnot battery serves as the base load for stable, large-scale energy storage, while hydrogen energy storage (PEMEC and SOFC) serves as the regulated load to flexibly absorbs excess renewable electricity and responds promptly to user demand. The integrated system also effectively leverages high-temperature waste from the SOFC to boost Carnot battery’s round-trip efficiency (RTE), enhancing overall system RTE. Energy and exergy analyses are conducted for both the proposed system and a reference system. Results indicate that the proposed system achieves an overall RTE of 57.48% and an RTE of 71.98% for the Carnot Battery, improvements of 5.71% and 11.32%, respectively, compared to the reference system. The mechanisms underlying the efficiency improvements are analyzed, and the impact of capacity allocation between hydrogen storage and the Carnot battery on overall system performance is explored.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119734"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002572","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As renewable energy capacity continues to surge, the volatility and intermittency of its generation poses a mismatch between supply and demand when aligned with the fluctuating user load. Consequently, there’s a pressing need for the development of large-scale, high-efficiency, rapid-response, long-duration energy storage system. This study presents a novel integrated energy storage system combining hydrogen energy storage and Carnot battery. Carnot battery serves as the base load for stable, large-scale energy storage, while hydrogen energy storage (PEMEC and SOFC) serves as the regulated load to flexibly absorbs excess renewable electricity and responds promptly to user demand. The integrated system also effectively leverages high-temperature waste from the SOFC to boost Carnot battery’s round-trip efficiency (RTE), enhancing overall system RTE. Energy and exergy analyses are conducted for both the proposed system and a reference system. Results indicate that the proposed system achieves an overall RTE of 57.48% and an RTE of 71.98% for the Carnot Battery, improvements of 5.71% and 11.32%, respectively, compared to the reference system. The mechanisms underlying the efficiency improvements are analyzed, and the impact of capacity allocation between hydrogen storage and the Carnot battery on overall system performance is explored.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.