Improved design and performance study of a novel fixed tube-sheet heat exchanger utilizing a fluid drainage column

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Qichao Wang , Zhihui Zhao , Jie Pan , Xiang Li , Haifeng Chen , Huanying Liu , Bingyuan Hong
{"title":"Improved design and performance study of a novel fixed tube-sheet heat exchanger utilizing a fluid drainage column","authors":"Qichao Wang ,&nbsp;Zhihui Zhao ,&nbsp;Jie Pan ,&nbsp;Xiang Li ,&nbsp;Haifeng Chen ,&nbsp;Huanying Liu ,&nbsp;Bingyuan Hong","doi":"10.1016/j.cep.2025.110274","DOIUrl":null,"url":null,"abstract":"<div><div>The carbon emissions in the oil and gas industry are generally high, against the backdrop of low oil and gas recovery rates in oil depots during the summer. This paper proposes a novel fixed tube-sheet heat exchanger with hot fluid drainage column added at the left end cover. The aim is to enhance the heat transfer performance of the heat exchanger (HE), thereby improving the recovery rate. Computational fluid dynamics (CFD) methods are employed to study the performance of the novel fixed tube-sheet heat exchanger (NFTHE). Additionally, the NFTHE is compared with the conventional fixed tube-sheet heat exchanger (FTHE) under various industrial conditions. The results indicate that under the same industrial conditions, the heat transfer rate of the NFTHE increases by 2.46 % to 5.71 %, the overall heat transfer coefficient increases by 22.7 % to 32.6 %, the shell-side heat transfer coefficient increases by 10.6 % to 25.2 %, the effectiveness shows an improvement ranging from 1.72 % to 7.92 %, and the number of transfer units increases by 16.5 % to 44.8 % compared to the FTHE. Comprehensive performance validation parameters show that the NFTHE exhibits superior performance across all metrics, providing a new approach for the design of fixed tube-sheet heat exchangers by adding structures at the end cover.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110274"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001230","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon emissions in the oil and gas industry are generally high, against the backdrop of low oil and gas recovery rates in oil depots during the summer. This paper proposes a novel fixed tube-sheet heat exchanger with hot fluid drainage column added at the left end cover. The aim is to enhance the heat transfer performance of the heat exchanger (HE), thereby improving the recovery rate. Computational fluid dynamics (CFD) methods are employed to study the performance of the novel fixed tube-sheet heat exchanger (NFTHE). Additionally, the NFTHE is compared with the conventional fixed tube-sheet heat exchanger (FTHE) under various industrial conditions. The results indicate that under the same industrial conditions, the heat transfer rate of the NFTHE increases by 2.46 % to 5.71 %, the overall heat transfer coefficient increases by 22.7 % to 32.6 %, the shell-side heat transfer coefficient increases by 10.6 % to 25.2 %, the effectiveness shows an improvement ranging from 1.72 % to 7.92 %, and the number of transfer units increases by 16.5 % to 44.8 % compared to the FTHE. Comprehensive performance validation parameters show that the NFTHE exhibits superior performance across all metrics, providing a new approach for the design of fixed tube-sheet heat exchangers by adding structures at the end cover.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信