Vladimir Aleksandrovich Koshuro, Marina Alekseevna Fomina, Aleksandr Aleksandrovich Fomin
{"title":"Tantalum coatings formed on titanium by electrospark deposition with computer numerical control in a controlled gas environment","authors":"Vladimir Aleksandrovich Koshuro, Marina Alekseevna Fomina, Aleksandr Aleksandrovich Fomin","doi":"10.1016/j.ijrmhm.2025.107151","DOIUrl":null,"url":null,"abstract":"<div><div>Tantalum coatings were obtained on commercially pure titanium by electrospark deposition (ESD) at normal (760 Torr) and reduced (380 Torr) pressure in air or argon atmosphere. A monolayer of ESD tantalum coating with the thickness from 3.6 to 6.5 to 13.2–22.0 μm was applied at the working current of 0.5–2.0 A and constant speed of movement of the tool electrode equal to 60 mm/min along the trajectory, which was set using a complex with computer numerical control (CNC). The width of the deposited tracks in air atmosphere varied from 0.27 to 0.49 to 0.41–0.89 mm and in argon the track width stabilized in the range of 0.73–0.85 mm at an operating current of 1.0–2.0 A. The coatings formed in air were characterized by a high oxygen content from 17.36 to 19.38 to 40.81–47.15 at.% and nitrogen from 2.07 to 2.61 to 3.73–4.17 at.%, an average splat value from 72.6 to 74.4 to 118.1–202.4 μm, and microhardness from 5.4 to 7.7 to 12.1–12.3 GPa. The use of an argon environment allowed limiting the oxygen content in the range of 17.99–41.00 at.%, lowering the nitrogen content to 1.65–2.20 at.%, stabilization of the average splat size in the range of 89.0–121.9 μm, and reduction in the microhardness to 5.3–9.0 GPa.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107151"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001167","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tantalum coatings were obtained on commercially pure titanium by electrospark deposition (ESD) at normal (760 Torr) and reduced (380 Torr) pressure in air or argon atmosphere. A monolayer of ESD tantalum coating with the thickness from 3.6 to 6.5 to 13.2–22.0 μm was applied at the working current of 0.5–2.0 A and constant speed of movement of the tool electrode equal to 60 mm/min along the trajectory, which was set using a complex with computer numerical control (CNC). The width of the deposited tracks in air atmosphere varied from 0.27 to 0.49 to 0.41–0.89 mm and in argon the track width stabilized in the range of 0.73–0.85 mm at an operating current of 1.0–2.0 A. The coatings formed in air were characterized by a high oxygen content from 17.36 to 19.38 to 40.81–47.15 at.% and nitrogen from 2.07 to 2.61 to 3.73–4.17 at.%, an average splat value from 72.6 to 74.4 to 118.1–202.4 μm, and microhardness from 5.4 to 7.7 to 12.1–12.3 GPa. The use of an argon environment allowed limiting the oxygen content in the range of 17.99–41.00 at.%, lowering the nitrogen content to 1.65–2.20 at.%, stabilization of the average splat size in the range of 89.0–121.9 μm, and reduction in the microhardness to 5.3–9.0 GPa.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.