{"title":"Theoretical, experimental and numerical studies of a novel tension-compression bolt (TCB) for single-sided beam-column joints","authors":"Yulong Feng , Cheng Han , Wensu Chen","doi":"10.1016/j.tws.2025.113172","DOIUrl":null,"url":null,"abstract":"<div><div>Single-sided beam-column joints can minimize damage to the floor slab by avoiding the opening at the top flange. However, they face the challenge of limited restorative capacity, as unidirectional self-centering components cannot effectively resist both opening and closing actions at the bottom flange. Therefore, this study proposes a novel tension-compression bolt (TCB) that is a bidirectional self-centering component. It consists of a high-strength bolt for applying preload, a disc spring set to enhance deformation capacity, and a pair of sleeves that provide tension-compression functionality. In this study, theoretical analysis of the TCB is derived regarding load-displacement relationship and the TCB design process is proposed. After that, experimental study of the TCB is conducted to investigate its tension-compression performance as well as the effects of the disc spring set and sleeve on the performance. In addition, numerical simulations are conducted using detailed and simplified modelling methods for the TCB tests, and the influence of machining inaccuracies on the performance is assessed. Subsequently, a case study of beam-column joints incorporated with the TCB is numerically conducted. The proposed TCB demonstrates an enhanced tension-compression performance with sound energy-dissipating capacity, providing an effective solution for single-sided beam-column joints used in resilient structures to enable rapid restoration of functionality after earthquakes.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113172"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002666","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-sided beam-column joints can minimize damage to the floor slab by avoiding the opening at the top flange. However, they face the challenge of limited restorative capacity, as unidirectional self-centering components cannot effectively resist both opening and closing actions at the bottom flange. Therefore, this study proposes a novel tension-compression bolt (TCB) that is a bidirectional self-centering component. It consists of a high-strength bolt for applying preload, a disc spring set to enhance deformation capacity, and a pair of sleeves that provide tension-compression functionality. In this study, theoretical analysis of the TCB is derived regarding load-displacement relationship and the TCB design process is proposed. After that, experimental study of the TCB is conducted to investigate its tension-compression performance as well as the effects of the disc spring set and sleeve on the performance. In addition, numerical simulations are conducted using detailed and simplified modelling methods for the TCB tests, and the influence of machining inaccuracies on the performance is assessed. Subsequently, a case study of beam-column joints incorporated with the TCB is numerically conducted. The proposed TCB demonstrates an enhanced tension-compression performance with sound energy-dissipating capacity, providing an effective solution for single-sided beam-column joints used in resilient structures to enable rapid restoration of functionality after earthquakes.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.