Yanxue Pei , Muchen Yin , Yanan Cui , Fan Yang , Xueying Bian , Jun Li , Yaodong Wu
{"title":"Biodegradation characteristics of acetaminophen by Delftia sp. PY-12: Performance, degradative kinetics, and pathway","authors":"Yanxue Pei , Muchen Yin , Yanan Cui , Fan Yang , Xueying Bian , Jun Li , Yaodong Wu","doi":"10.1016/j.bej.2025.109707","DOIUrl":null,"url":null,"abstract":"<div><div>Acetaminophen (APAP) is widely used for its antipyretic properties and is commonly found in wastewater, potentially threatening aquatic ecosystems. Microbial degradation has been proven effective in removing APAP. However, strains capable of efficiently degrading APAP are rare, and the research on the biodegradation kinetics of APAP is insufficient. In this study, a novel APAP-degrading strain, identified as <em>Delftia sp</em>. PY-12 by morphological characterization and 16S rRNA gene sequencing, was isolated from activated sludge. Experimental conditions were optimized using the Box-Behnken response surface design, revealing that PY-12 degraded 100 mg/L APAP under pH 7.11, 30℃, and 163 rpm within 24 h, outperforming most other strains. Comparative analysis of substrate inhibition models shows that the Aiba and Tiesser were most suitable for the substrate inhibition characteristics of PY-12. The models indicate that PY-12 can still degrade APAP even at concentrations of 446.919 mg/L and 554.215 mg/L. Through potential enzyme activity measurements, the degradation pathway of APAP by PY-12 was determined. APAP is first converted by amidohydrolase into 4-aminophenol (4-AP) and then converted by deaminase into hydroquinone (HQ), which is further converted by hydroquinone 1,2-dioxygenase to form 4-hydroxymuconic semialdehyde, ultimately entering the TCA cycle. This study revealed the potential application value of PY-12 in APAP degradation, which could be a strong candidate strain for microbial bioremediation of APAP pollution in environmental remediation.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"219 ","pages":"Article 109707"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000816","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetaminophen (APAP) is widely used for its antipyretic properties and is commonly found in wastewater, potentially threatening aquatic ecosystems. Microbial degradation has been proven effective in removing APAP. However, strains capable of efficiently degrading APAP are rare, and the research on the biodegradation kinetics of APAP is insufficient. In this study, a novel APAP-degrading strain, identified as Delftia sp. PY-12 by morphological characterization and 16S rRNA gene sequencing, was isolated from activated sludge. Experimental conditions were optimized using the Box-Behnken response surface design, revealing that PY-12 degraded 100 mg/L APAP under pH 7.11, 30℃, and 163 rpm within 24 h, outperforming most other strains. Comparative analysis of substrate inhibition models shows that the Aiba and Tiesser were most suitable for the substrate inhibition characteristics of PY-12. The models indicate that PY-12 can still degrade APAP even at concentrations of 446.919 mg/L and 554.215 mg/L. Through potential enzyme activity measurements, the degradation pathway of APAP by PY-12 was determined. APAP is first converted by amidohydrolase into 4-aminophenol (4-AP) and then converted by deaminase into hydroquinone (HQ), which is further converted by hydroquinone 1,2-dioxygenase to form 4-hydroxymuconic semialdehyde, ultimately entering the TCA cycle. This study revealed the potential application value of PY-12 in APAP degradation, which could be a strong candidate strain for microbial bioremediation of APAP pollution in environmental remediation.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.