An adaptive control method for room air conditioners based on application scene identification and user preference prediction

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Haomin Cao , Zhiqiang Zeng , Dawei Zhuang , Guoliang Ding , Yanpo Shao , Hao Zhang , Wenduan Qi , Xiong Zheng
{"title":"An adaptive control method for room air conditioners based on application scene identification and user preference prediction","authors":"Haomin Cao ,&nbsp;Zhiqiang Zeng ,&nbsp;Dawei Zhuang ,&nbsp;Guoliang Ding ,&nbsp;Yanpo Shao ,&nbsp;Hao Zhang ,&nbsp;Wenduan Qi ,&nbsp;Xiong Zheng","doi":"10.1016/j.ijrefrig.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Room air conditioners are widely used to control indoor air parameters to user preferred values for thermal comfort, but the existing control methods might be uncomfortable due to changeable user preferences or be high-cost due to physiological sensors. The purpose of this study is to develop an adaptive control method for room air conditioners at a low cost. The basic idea is to adopt data mining of operating parameters instead of monitoring by physiological sensors, and the key technology is the control of compressor frequency and indoor unit fan speed based on the application scene of the room air conditioner and the user preferred values of indoor air parameters. During the use of the room air conditioner, the application scene is identified by comparing the probabilities of the room air conditioner being in the sleep scene, work scene, or leisure scene, and the user preferred values are predicted by correcting the group preferred values of users in the same city with the setting records of the user. To ensure the reliability of the control method, the accuracy of application scene identification, user preference prediction, and adaptive control is validated by the data collected from the room air conditioners used in the cities of Shanghai, Guangzhou, Dalian, Wuhan, Chongqing, and Haikou. It is shown that the accuracy of application scene identification, user preferred air temperature prediction and user preferred air velocity prediction is 79 %, 88 %, and 94 %, respectively; indoor air temperatures can be controlled within ±0.5 °C of the set values.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"174 ","pages":"Pages 138-153"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725000982","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Room air conditioners are widely used to control indoor air parameters to user preferred values for thermal comfort, but the existing control methods might be uncomfortable due to changeable user preferences or be high-cost due to physiological sensors. The purpose of this study is to develop an adaptive control method for room air conditioners at a low cost. The basic idea is to adopt data mining of operating parameters instead of monitoring by physiological sensors, and the key technology is the control of compressor frequency and indoor unit fan speed based on the application scene of the room air conditioner and the user preferred values of indoor air parameters. During the use of the room air conditioner, the application scene is identified by comparing the probabilities of the room air conditioner being in the sleep scene, work scene, or leisure scene, and the user preferred values are predicted by correcting the group preferred values of users in the same city with the setting records of the user. To ensure the reliability of the control method, the accuracy of application scene identification, user preference prediction, and adaptive control is validated by the data collected from the room air conditioners used in the cities of Shanghai, Guangzhou, Dalian, Wuhan, Chongqing, and Haikou. It is shown that the accuracy of application scene identification, user preferred air temperature prediction and user preferred air velocity prediction is 79 %, 88 %, and 94 %, respectively; indoor air temperatures can be controlled within ±0.5 °C of the set values.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信