Green facile fabrication of flame-retardant straw cellulose nanofiber laminate with enhanced mechanical strength

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Rui Yang , Jing Zhou , Xiaoqi Yang , Haiyang Lu , Linghui Qi , Yue Ni , Changlei Xia , Jianzhang Li
{"title":"Green facile fabrication of flame-retardant straw cellulose nanofiber laminate with enhanced mechanical strength","authors":"Rui Yang ,&nbsp;Jing Zhou ,&nbsp;Xiaoqi Yang ,&nbsp;Haiyang Lu ,&nbsp;Linghui Qi ,&nbsp;Yue Ni ,&nbsp;Changlei Xia ,&nbsp;Jianzhang Li","doi":"10.1016/j.compositesb.2025.112377","DOIUrl":null,"url":null,"abstract":"<div><div>Natural biomass resources are highly valued for their high biodegradability, high sustainability, and easy modification. However, their large-scale application is limited by their flammability. Numerous flame-retardant modification methods have been developed. However, they are limited by low performance and poor mechanical properties. In this study, a novel method was proposed for preparing flame-retardant cellulose nanofiber laminates, focusing on raw material selection, modification method, and laminated structure. The silica in natural straw was retained, and the fibers were swollen using the green and environmentally friendly deep eutectic solvent, resulting in the partial dissolution of cellulose. This process reduced the energy consumption of mechanical treatment during the preparation of straw cellulose nanofibers. Sulfonic acid groups were grafted onto the straw cellulose to impart flame-retardant properties to the material. By leveraging the laminated structure to block heat transfer between layers, the material achieved excellent flame-retardant performance and mechanical properties. The flame-retardant straw cellulose nanofiber laminate achieved an LOI of 61.9 %. The results of thermogravimetric analysis showed that the residual carbon content can reach 37.6 %, which is 40.3 % higher than that of the CNFL. This study presents a novel approach to developing flame-retardant biomass boards.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112377"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002690","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural biomass resources are highly valued for their high biodegradability, high sustainability, and easy modification. However, their large-scale application is limited by their flammability. Numerous flame-retardant modification methods have been developed. However, they are limited by low performance and poor mechanical properties. In this study, a novel method was proposed for preparing flame-retardant cellulose nanofiber laminates, focusing on raw material selection, modification method, and laminated structure. The silica in natural straw was retained, and the fibers were swollen using the green and environmentally friendly deep eutectic solvent, resulting in the partial dissolution of cellulose. This process reduced the energy consumption of mechanical treatment during the preparation of straw cellulose nanofibers. Sulfonic acid groups were grafted onto the straw cellulose to impart flame-retardant properties to the material. By leveraging the laminated structure to block heat transfer between layers, the material achieved excellent flame-retardant performance and mechanical properties. The flame-retardant straw cellulose nanofiber laminate achieved an LOI of 61.9 %. The results of thermogravimetric analysis showed that the residual carbon content can reach 37.6 %, which is 40.3 % higher than that of the CNFL. This study presents a novel approach to developing flame-retardant biomass boards.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信