Wolfgang Bock , Roozbeh Hazrat , Alfilgen Sebandal
{"title":"The graded classification conjectures hold for various finite representations of Leavitt path algebras","authors":"Wolfgang Bock , Roozbeh Hazrat , Alfilgen Sebandal","doi":"10.1016/j.jalgebra.2025.02.035","DOIUrl":null,"url":null,"abstract":"<div><div>The Graded Classification Conjecture states that for finite directed graphs <em>E</em> and <em>F</em>, the associated Leavitt path algebras <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> are graded Morita equivalent, i.e., <span><math><mi>Gr-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><msub><mrow><mo>≈</mo></mrow><mrow><mi>gr</mi></mrow></msub><mi>Gr-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>, if and only if, their graded Grothendieck groups are isomorphic <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>gr</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo><mo>≅</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>gr</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo></math></span> as order-preserving <span><math><mi>Z</mi><mo>[</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span>-modules. Furthermore, if under this isomorphism, the class <span><math><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>]</mo></math></span> is sent to <span><math><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>]</mo></math></span> then the algebras are graded isomorphic, i.e., <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><msub><mrow><mo>≅</mo></mrow><mrow><mi>gr</mi></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>.</div><div>In this note we show that, for finite graphs <em>E</em> and <em>F</em> with no sinks and sources, an order-preserving <span><math><mi>Z</mi><mo>[</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span>-module isomorphism <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>gr</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo><mo>≅</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>gr</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo></math></span> gives that the categories of locally finite dimensional graded modules of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> are equivalent, i.e., <span><math><mrow><mi>g</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>Z</mi></mrow></msup><mo>−</mo></mrow><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><msub><mrow><mo>≈</mo></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mi>g</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>Z</mi></mrow></msup><mo>−</mo></mrow><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>. We further obtain that the category of finite dimensional (graded) modules is equivalent, i.e., <span><math><mi>mod-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>≈</mo><mi>mod-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mi>gr-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><msub><mrow><mo>≈</mo></mrow><mrow><mi>gr</mi></mrow></msub><mi>gr-</mi><mspace></mspace><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"672 ","pages":"Pages 303-333"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001115","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Graded Classification Conjecture states that for finite directed graphs E and F, the associated Leavitt path algebras and are graded Morita equivalent, i.e., , if and only if, their graded Grothendieck groups are isomorphic as order-preserving -modules. Furthermore, if under this isomorphism, the class is sent to then the algebras are graded isomorphic, i.e., .
In this note we show that, for finite graphs E and F with no sinks and sources, an order-preserving -module isomorphism gives that the categories of locally finite dimensional graded modules of and are equivalent, i.e., . We further obtain that the category of finite dimensional (graded) modules is equivalent, i.e., and .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.