Tingting Wang , Zhewen Wang , Junxiang Shi , Ying Yin , Wenchao Du , Jichun Wu , Hongyan Guo
{"title":"A green sulfidated micro zero-valent iron based-hydrogel for the synergistic removal of heavy metal cations and anions in groundwater","authors":"Tingting Wang , Zhewen Wang , Junxiang Shi , Ying Yin , Wenchao Du , Jichun Wu , Hongyan Guo","doi":"10.1016/j.scitotenv.2025.179096","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal cations and anions contaminated groundwater was a big challenge to water resource safety. Herein, a green sulfidated micro zero-valent iron-based hydrogel (SA-S-mZVI) was synthesized using sodium alginate biomass for the simultaneous removal of heavy metal cations (Cu(II), Pb(II), Cd(II)) and anions (Cr(VI)). The sulfur modification and incorporation of sodium alginate hydrogel facilitated the efficient and sustainable removal of both single and multi-heavy metals. The co-existing heavy metal cations benefited the removal of Cr(VI), and heavy metals were mostly transformed into stable precipitates. The presence of organic substance and ions slightly affected the removal of heavy metals. Long-term column experiments (240 days) showed that SA-S-mZVI maintained over 99.9 % removal efficiency for heavy metal cations and anions, without adverse impacts on the groundwater environment. This study provided new insights into the development of eco-friendly, long-lasting zero-valent iron-based hydrogels for in-situ remediation of heavy metals-contaminated groundwater.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"972 ","pages":"Article 179096"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725007314","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal cations and anions contaminated groundwater was a big challenge to water resource safety. Herein, a green sulfidated micro zero-valent iron-based hydrogel (SA-S-mZVI) was synthesized using sodium alginate biomass for the simultaneous removal of heavy metal cations (Cu(II), Pb(II), Cd(II)) and anions (Cr(VI)). The sulfur modification and incorporation of sodium alginate hydrogel facilitated the efficient and sustainable removal of both single and multi-heavy metals. The co-existing heavy metal cations benefited the removal of Cr(VI), and heavy metals were mostly transformed into stable precipitates. The presence of organic substance and ions slightly affected the removal of heavy metals. Long-term column experiments (240 days) showed that SA-S-mZVI maintained over 99.9 % removal efficiency for heavy metal cations and anions, without adverse impacts on the groundwater environment. This study provided new insights into the development of eco-friendly, long-lasting zero-valent iron-based hydrogels for in-situ remediation of heavy metals-contaminated groundwater.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.