Self-training EEG discrimination model with weakly supervised sample construction: An age-based perspective on ASD evaluation

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tengfei Gao , Dan Chen , Meiqi Zhou , Yaodong Wang , Yiping Zuo , Weiping Tu , Xiaoli Li , Jingying Chen
{"title":"Self-training EEG discrimination model with weakly supervised sample construction: An age-based perspective on ASD evaluation","authors":"Tengfei Gao ,&nbsp;Dan Chen ,&nbsp;Meiqi Zhou ,&nbsp;Yaodong Wang ,&nbsp;Yiping Zuo ,&nbsp;Weiping Tu ,&nbsp;Xiaoli Li ,&nbsp;Jingying Chen","doi":"10.1016/j.neunet.2025.107337","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning for Electroencephalography (EEG) has become dominant in the tasks of discrimination and evaluation of brain disorders. However, despite its significant successes, this approach has long been facing challenges due to the limited availability of labeled samples and the individuality of subjects, particularly in complex scenarios such as Autism Spectrum Disorders (ASD). To facilitate the efficient optimization of EEG discrimination models in the face of these limitations, this study has developed a framework called STEM (Self-Training EEG Model). STEM accomplishes this by self-training the model, which involves initializing it with limited labeled samples and optimizing it with self-constructed samples. (1) <em>Model initialization with multi-task learning:</em> A multi-task model (MAC) comprising an AutoEncoder and a classifier offers guidance for subsequent pseudo-labeling. This guidance includes task-related latent EEG representations and prediction probabilities of unlabeled samples. The AutoEncoder, which consists of depth-separable convolutions and BiGRUs, is responsible for learning comprehensive EEG representations through the EEG reconstruction task. Meanwhile, the classifier, trained using limited labeled samples through supervised learning, directs the model’s attention towards capturing task-related features. (2) <em>Model optimization aided by pseudo-labeled samples construction:</em> Next, trustworthy pseudo-labels are assigned to the unlabeled samples, and this approach (PLASC) combines the sample’s distance relationship in the feature space mapped by the encoder with the sample’s predicted probability, using the initial MAC model as a reference. The constructed pseudo-labeled samples then support the self-training of MAC to learn individual information from new subjects, potentially enhancing the adaptation of the optimized model to samples from new subjects. The STEM framework has undergone an extensive evaluation, comparing it to state-of-the-art counterparts, using resting-state EEG data collected from 175 ASD-suspicious children spanning different age groups. The observed results indicate the following: (1) STEM achieves the best performance, with an accuracy of 88.33% and an F1-score of 87.24%, and (2) STEM’s multi-task learning capability outperforms supervised methods when labeled data is limited. More importantly, the use of PLASC improves the model’s performance in ASD discrimination across different age groups, resulting in an increase in accuracy (3%–8%) and F1-scores (4%–10%). These increments are approximately 6% higher than those achieved by the comparison methods.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107337"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002163","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning for Electroencephalography (EEG) has become dominant in the tasks of discrimination and evaluation of brain disorders. However, despite its significant successes, this approach has long been facing challenges due to the limited availability of labeled samples and the individuality of subjects, particularly in complex scenarios such as Autism Spectrum Disorders (ASD). To facilitate the efficient optimization of EEG discrimination models in the face of these limitations, this study has developed a framework called STEM (Self-Training EEG Model). STEM accomplishes this by self-training the model, which involves initializing it with limited labeled samples and optimizing it with self-constructed samples. (1) Model initialization with multi-task learning: A multi-task model (MAC) comprising an AutoEncoder and a classifier offers guidance for subsequent pseudo-labeling. This guidance includes task-related latent EEG representations and prediction probabilities of unlabeled samples. The AutoEncoder, which consists of depth-separable convolutions and BiGRUs, is responsible for learning comprehensive EEG representations through the EEG reconstruction task. Meanwhile, the classifier, trained using limited labeled samples through supervised learning, directs the model’s attention towards capturing task-related features. (2) Model optimization aided by pseudo-labeled samples construction: Next, trustworthy pseudo-labels are assigned to the unlabeled samples, and this approach (PLASC) combines the sample’s distance relationship in the feature space mapped by the encoder with the sample’s predicted probability, using the initial MAC model as a reference. The constructed pseudo-labeled samples then support the self-training of MAC to learn individual information from new subjects, potentially enhancing the adaptation of the optimized model to samples from new subjects. The STEM framework has undergone an extensive evaluation, comparing it to state-of-the-art counterparts, using resting-state EEG data collected from 175 ASD-suspicious children spanning different age groups. The observed results indicate the following: (1) STEM achieves the best performance, with an accuracy of 88.33% and an F1-score of 87.24%, and (2) STEM’s multi-task learning capability outperforms supervised methods when labeled data is limited. More importantly, the use of PLASC improves the model’s performance in ASD discrimination across different age groups, resulting in an increase in accuracy (3%–8%) and F1-scores (4%–10%). These increments are approximately 6% higher than those achieved by the comparison methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信