Shuqi Dong , Linqi Li , Zhaoqiang Zhou , Qiang Fu , Mo Li , Ping Xue
{"title":"Groundwater drought propagation and the drought resistance capacity in different climatic regions of China","authors":"Shuqi Dong , Linqi Li , Zhaoqiang Zhou , Qiang Fu , Mo Li , Ping Xue","doi":"10.1016/j.agwat.2025.109425","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensively understanding the interactions between different drought types is important for implementing effective drought warnings. However, recent research has focused mainly on propagation among meteorological drought (MD), hydrological drought (HD) and agricultural drought (AD), with a lack of groundwater drought (GD) propagation research. Therefore, this study focused on GD, and the characteristics of MD, AD, and AD in different climatic regions of China were evaluated. The conditional probability was employed to determine the drought propagation threshold under the MD<img>AD<img>GD propagation path, and the dynamic changes in drought propagation thresholds were analyzed to reveal the spatial difference in drought resistance capacity. Finally, the main factors influencing GD were analyzed. The results indicated that (1) the soil water system in Northeast China, the Qinghai<img>Tibet Plateau and northern Northwest China exhibits high drought resistance for MD. Moreover, the groundwater system in Northeast China, North China and the Qinghai<img>Tibet Plateau exhibits notable drought resistance for AD. (2) The propagation threshold for GD in most areas is decreasing, indicating a decreasing trend of GD resistance capacity in most areas, posing greater challenges to GD mitigation. (3) Deep soil moisture provides an important buffer zone, and its variation affects GD. However, in areas rich in hydrothermal resources, the water deficit represented by precipitation and evaporation may play a more important role. The results of this study are helpful for understanding the drought propagation process and formulating drought prevention and mitigation policies.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"312 ","pages":"Article 109425"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425001398","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensively understanding the interactions between different drought types is important for implementing effective drought warnings. However, recent research has focused mainly on propagation among meteorological drought (MD), hydrological drought (HD) and agricultural drought (AD), with a lack of groundwater drought (GD) propagation research. Therefore, this study focused on GD, and the characteristics of MD, AD, and AD in different climatic regions of China were evaluated. The conditional probability was employed to determine the drought propagation threshold under the MDADGD propagation path, and the dynamic changes in drought propagation thresholds were analyzed to reveal the spatial difference in drought resistance capacity. Finally, the main factors influencing GD were analyzed. The results indicated that (1) the soil water system in Northeast China, the QinghaiTibet Plateau and northern Northwest China exhibits high drought resistance for MD. Moreover, the groundwater system in Northeast China, North China and the QinghaiTibet Plateau exhibits notable drought resistance for AD. (2) The propagation threshold for GD in most areas is decreasing, indicating a decreasing trend of GD resistance capacity in most areas, posing greater challenges to GD mitigation. (3) Deep soil moisture provides an important buffer zone, and its variation affects GD. However, in areas rich in hydrothermal resources, the water deficit represented by precipitation and evaporation may play a more important role. The results of this study are helpful for understanding the drought propagation process and formulating drought prevention and mitigation policies.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.