In-situ alloying of nonequiatomic TiNbMoTaW refractory bio-high entropy alloy via laser powder bed fusion: Achieving suppressed microsegregation and texture formation
IF 7.6 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yong Seong Kim , Ozkan Gokcekaya , Kazuhisa Sato , Ryosuke Ozasa , Aira Matsugaki , Takayoshi Nakano
{"title":"In-situ alloying of nonequiatomic TiNbMoTaW refractory bio-high entropy alloy via laser powder bed fusion: Achieving suppressed microsegregation and texture formation","authors":"Yong Seong Kim , Ozkan Gokcekaya , Kazuhisa Sato , Ryosuke Ozasa , Aira Matsugaki , Takayoshi Nakano","doi":"10.1016/j.matdes.2025.113824","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) have attracted considerable attention owing to their excellent properties. However, the severe segregation of the constituent elements remains a common challenge in refractory HEAs. Recently, an approach to suppress segregation was proposed using laser powder bed fusion (LPBF) owing to the ultra-high cooling rates during solidification. Despite the advantages of LPBF, the persistent microsegregation between the dendritic and interdendritic regions of refractory HEAs and costly gas atomization process hinder the further development. To address these challenges, a novel nonequiatomic TiNbMoTaW refractory HEA was designed to minimize the difference between the liquidus and solidus temperatures to prevent segregation and phase separation for a better biological performance. In-situ alloying was implemented instead of costly and time-consuming gas atomization process. The segregation of constituent elements was suppressed by remelting, resulted in epitaxial growth and development of crystallographic texture, consequently reducing residual stress. The mechanical properties were improved due to the increase of solid solution strengthening and densification. It showed superior mechanical strength and equivalent biocompatibility compared to conventional biomaterials, indicating its superiority as a biomaterial. This study represents the first successful control of crystallographic texture through in-situ alloying of BioHEAs for next-generation biomaterials.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113824"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002448","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) have attracted considerable attention owing to their excellent properties. However, the severe segregation of the constituent elements remains a common challenge in refractory HEAs. Recently, an approach to suppress segregation was proposed using laser powder bed fusion (LPBF) owing to the ultra-high cooling rates during solidification. Despite the advantages of LPBF, the persistent microsegregation between the dendritic and interdendritic regions of refractory HEAs and costly gas atomization process hinder the further development. To address these challenges, a novel nonequiatomic TiNbMoTaW refractory HEA was designed to minimize the difference between the liquidus and solidus temperatures to prevent segregation and phase separation for a better biological performance. In-situ alloying was implemented instead of costly and time-consuming gas atomization process. The segregation of constituent elements was suppressed by remelting, resulted in epitaxial growth and development of crystallographic texture, consequently reducing residual stress. The mechanical properties were improved due to the increase of solid solution strengthening and densification. It showed superior mechanical strength and equivalent biocompatibility compared to conventional biomaterials, indicating its superiority as a biomaterial. This study represents the first successful control of crystallographic texture through in-situ alloying of BioHEAs for next-generation biomaterials.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.