Haifeng Lan , Huiying (Cynthia) Hou , Man Sing Wong
{"title":"Integrating infrared facial thermal imaging and tabular data for multimodal prediction of occupants' thermal sensation","authors":"Haifeng Lan , Huiying (Cynthia) Hou , Man Sing Wong","doi":"10.1016/j.buildenv.2025.112814","DOIUrl":null,"url":null,"abstract":"<div><div>Developing robust thermal comfort models is essential for occupant-centric control (OCC) to optimize the indoor thermal environment while minimizing energy consumption. Conventional single-modal machine learning models, relying solely on either tabular or image data, often suffer from limited prediction accuracy and versatility. To address these challenges, this study proposes a multimodal framework that integrates both data types. A dataset of 610 paired records, encompassing environmental data, individual attributes, thermal sensation votes (TSV), and occupants’ facial thermal images, was collected. Separate single-modal models were trained on tabular and image data to identify the best-performing model for each modality. These were subsequently integrated using a self-attention mechanism to develop a unified multimodal predictive model. Results demonstrate that the artificial neural network (ANN), utilizing only tabular data, achieved an accuracy of 69.67% without incorporating temperature variables from facial regions of interest (ROIs), increasing to 72.46% when these variables were included. Conversely, the Inception-V3 model, trained solely on facial thermal images, achieved 63.44% accuracy. By integrating these approaches, the ANN+Inception-V3 multimodal model achieved a significantly improved accuracy of 81.48%, effectively capturing interaction effects from both data types. This study presents a robust framework and methodological reference for advancing multimodal thermal comfort prediction models, enabling scalable, personalized, and energy-efficient management strategies for indoor environments.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"275 ","pages":"Article 112814"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132325002963","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing robust thermal comfort models is essential for occupant-centric control (OCC) to optimize the indoor thermal environment while minimizing energy consumption. Conventional single-modal machine learning models, relying solely on either tabular or image data, often suffer from limited prediction accuracy and versatility. To address these challenges, this study proposes a multimodal framework that integrates both data types. A dataset of 610 paired records, encompassing environmental data, individual attributes, thermal sensation votes (TSV), and occupants’ facial thermal images, was collected. Separate single-modal models were trained on tabular and image data to identify the best-performing model for each modality. These were subsequently integrated using a self-attention mechanism to develop a unified multimodal predictive model. Results demonstrate that the artificial neural network (ANN), utilizing only tabular data, achieved an accuracy of 69.67% without incorporating temperature variables from facial regions of interest (ROIs), increasing to 72.46% when these variables were included. Conversely, the Inception-V3 model, trained solely on facial thermal images, achieved 63.44% accuracy. By integrating these approaches, the ANN+Inception-V3 multimodal model achieved a significantly improved accuracy of 81.48%, effectively capturing interaction effects from both data types. This study presents a robust framework and methodological reference for advancing multimodal thermal comfort prediction models, enabling scalable, personalized, and energy-efficient management strategies for indoor environments.
期刊介绍:
Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.