Geothermal Sourced Trigeneration Plant for Puga Valley: Techno-Economic Analysis and Multi-Objective Optimization

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS
Siddharth Ramachandran , Satya Sekhar Bhogilla , Pallippattu Krishnan Vijayan
{"title":"Geothermal Sourced Trigeneration Plant for Puga Valley: Techno-Economic Analysis and Multi-Objective Optimization","authors":"Siddharth Ramachandran ,&nbsp;Satya Sekhar Bhogilla ,&nbsp;Pallippattu Krishnan Vijayan","doi":"10.1016/j.tsep.2025.103487","DOIUrl":null,"url":null,"abstract":"<div><div>The techno-economic feasibility of a binary geothermal trigeneration plant customized for the Puga Valley, India, was examined for the concurrent generation of power and green hydrogen, in addition to district heating. This study considers the unique geotechnical data of the Puga Valley, including geothermal gradients for individual gauged wells and related cost functions. The primary mover of the trigeneration plant is a dual-loop organic Rankine cycle (ORC), with R123 as the primary working fluid and R125 as the secondary working fluid. The bottoming ORC loop was coupled with a proton-exchange membrane electrolyzer, harnessing its net power to produce green hydrogen. Geothermal resources are used to generate thermal energy for district heating, thereby increasing the overall efficiency of the plant. The overall effectiveness and cost of the system are significantly affected by variations in operational and design factors, such as the temperature, fluid flow rate of the geothermal source, and ORC turbine inlet temperature. An artificial neural network-based multi-objective optimization study was conducted to ascertain the optimum values for the aforementioned parameters. The outcome represents an optimal Pareto curve, with the objective functions being the trigeneration plant’s overall cost rate, electricity yield, and exergy efficiency. The proposed trigeneration plant could simultaneously produce 1.1 MW of electricity, 5.7 kg/h of green hydrogen, and 789.2 kW of thermal energy for the district heat network at a supply temperature of 85 °C at the optimal operating point. The corresponding values for the overall energy efficiency, exergy efficiency, and total cost rate were determined as 17.2 %, 38 %, and 56.8 US$/h, respectively.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"60 ","pages":"Article 103487"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492500277X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The techno-economic feasibility of a binary geothermal trigeneration plant customized for the Puga Valley, India, was examined for the concurrent generation of power and green hydrogen, in addition to district heating. This study considers the unique geotechnical data of the Puga Valley, including geothermal gradients for individual gauged wells and related cost functions. The primary mover of the trigeneration plant is a dual-loop organic Rankine cycle (ORC), with R123 as the primary working fluid and R125 as the secondary working fluid. The bottoming ORC loop was coupled with a proton-exchange membrane electrolyzer, harnessing its net power to produce green hydrogen. Geothermal resources are used to generate thermal energy for district heating, thereby increasing the overall efficiency of the plant. The overall effectiveness and cost of the system are significantly affected by variations in operational and design factors, such as the temperature, fluid flow rate of the geothermal source, and ORC turbine inlet temperature. An artificial neural network-based multi-objective optimization study was conducted to ascertain the optimum values for the aforementioned parameters. The outcome represents an optimal Pareto curve, with the objective functions being the trigeneration plant’s overall cost rate, electricity yield, and exergy efficiency. The proposed trigeneration plant could simultaneously produce 1.1 MW of electricity, 5.7 kg/h of green hydrogen, and 789.2 kW of thermal energy for the district heat network at a supply temperature of 85 °C at the optimal operating point. The corresponding values for the overall energy efficiency, exergy efficiency, and total cost rate were determined as 17.2 %, 38 %, and 56.8 US$/h, respectively.
研究了为印度普加山谷量身定制的二元地热三联供发电厂的技术经济可行性,该发电厂除区域供热外,还可同时发电和生产绿色氢气。该研究考虑了普加山谷独特的岩土工程数据,包括单个测量井的地热梯度和相关成本函数。三联供发电厂的主要动力是双回路有机朗肯循环 (ORC),R123 为主要工作流体,R125 为次级工作流体。底部 ORC 循环与质子交换膜电解槽相连,利用其净功率生产绿色氢气。利用地热资源产生热能,用于区域供热,从而提高了工厂的整体效率。地热资源的温度、流体流速和 ORC 涡轮入口温度等运行和设计因素的变化会对系统的整体效率和成本产生重大影响。为确定上述参数的最佳值,进行了基于人工神经网络的多目标优化研究。结果显示了一条最佳帕累托曲线,目标函数为三联供发电厂的总成本费用、发电量和放能效率。在最佳运行点,供应温度为 85 °C,拟议的三联供发电厂可同时为区域热网生产 1.1 兆瓦电力、5.7 千克/小时绿色氢气和 789.2 千瓦热能。总体能源效率、放能效率和总成本率的相应值分别为 17.2%、38% 和 56.8 美元/小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信