Deep small-RNA sequencing uncovers a diverse spectrum of microRNAs putatively regulating biosynthesis and variation of specialized metabolites in Thymus daenensis

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hosein Ahmadi , Reza Fatahi , Peter Poczai , Zabihollah Zamani , Majid Shokrpour
{"title":"Deep small-RNA sequencing uncovers a diverse spectrum of microRNAs putatively regulating biosynthesis and variation of specialized metabolites in Thymus daenensis","authors":"Hosein Ahmadi ,&nbsp;Reza Fatahi ,&nbsp;Peter Poczai ,&nbsp;Zabihollah Zamani ,&nbsp;Majid Shokrpour","doi":"10.1016/j.bcab.2025.103550","DOIUrl":null,"url":null,"abstract":"<div><div><em>Thymus daenensis</em> Celak., is an ideal model for delving into the intricate regulatory mechanisms involved in polyphenol biosynthesis and thymol-rich essential oil (EO) production. While, there has been an effort to explore metabolic pathways in thyme species at mRNA level, but mechanisms responsible for post-transcriptional control, in particular microRNAs (miRNAs), are understood only poorly. Here, the sequencing of approximately 75 million small-RNA reads resulted in identification of 618 conserved miRNAs, 50 multi-member families, and 28 novel miRNAs. A comparative analysis of the small-RNAome profile was conducted between two distinct genotypes: Zagheh-11, characterized by low EO content but rich in carvacrol and triterpenic acids, and Malayer-21, which exhibited higher levels of thymol, EO, and rosmarinate. The divergence in their terpenome appears to stem from a genotype-specific control over MEP and MVA pathways, primarily influenced by 10 differentially expressed miRNAs. The expression patterns of key miRNAs and their putative targets ([miR396c, DXS], [miR477a, ispD], [miR135a, ispE], [miR9b-5p, MVD and MVK], [miR181a-3p, ACAT]) were validated using qRT-PCR. Furthermore, we uncovered an extensive network consisting of 139 miRNAs that target 47 enzyme genes in the biosynthetic pathways of secondary metabolites. The majority of the 13 928 identified target unigenes were enriched in pathways of secondary metabolites, carbon and amino acid metabolism. We found miR166 and miR159 as the most abundantly expressed miRNAs in <em>T. daenensis</em>. We examined the conservation and phylogenetic status of the miR159, miR164, and miR396 families, highlighting their profound impacts on production of specialized metabolites. The putative regulatory behavior of <em>tda-</em>miRNAs herein presents a promising foundation for strategically altering metabolic pathways, enabling the controlled production of targeted drug compounds.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103550"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thymus daenensis Celak., is an ideal model for delving into the intricate regulatory mechanisms involved in polyphenol biosynthesis and thymol-rich essential oil (EO) production. While, there has been an effort to explore metabolic pathways in thyme species at mRNA level, but mechanisms responsible for post-transcriptional control, in particular microRNAs (miRNAs), are understood only poorly. Here, the sequencing of approximately 75 million small-RNA reads resulted in identification of 618 conserved miRNAs, 50 multi-member families, and 28 novel miRNAs. A comparative analysis of the small-RNAome profile was conducted between two distinct genotypes: Zagheh-11, characterized by low EO content but rich in carvacrol and triterpenic acids, and Malayer-21, which exhibited higher levels of thymol, EO, and rosmarinate. The divergence in their terpenome appears to stem from a genotype-specific control over MEP and MVA pathways, primarily influenced by 10 differentially expressed miRNAs. The expression patterns of key miRNAs and their putative targets ([miR396c, DXS], [miR477a, ispD], [miR135a, ispE], [miR9b-5p, MVD and MVK], [miR181a-3p, ACAT]) were validated using qRT-PCR. Furthermore, we uncovered an extensive network consisting of 139 miRNAs that target 47 enzyme genes in the biosynthetic pathways of secondary metabolites. The majority of the 13 928 identified target unigenes were enriched in pathways of secondary metabolites, carbon and amino acid metabolism. We found miR166 and miR159 as the most abundantly expressed miRNAs in T. daenensis. We examined the conservation and phylogenetic status of the miR159, miR164, and miR396 families, highlighting their profound impacts on production of specialized metabolites. The putative regulatory behavior of tda-miRNAs herein presents a promising foundation for strategically altering metabolic pathways, enabling the controlled production of targeted drug compounds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信