Attribute-guided feature fusion network with knowledge-inspired attention mechanism for multi-source remote sensing classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Pan, Changzhe Jiao, Bo Yang, Hao Zhu, Jinjian Wu
{"title":"Attribute-guided feature fusion network with knowledge-inspired attention mechanism for multi-source remote sensing classification","authors":"Xiao Pan,&nbsp;Changzhe Jiao,&nbsp;Bo Yang,&nbsp;Hao Zhu,&nbsp;Jinjian Wu","doi":"10.1016/j.neunet.2025.107332","DOIUrl":null,"url":null,"abstract":"<div><div>Land use and land cover (LULC) classification is a popular research area in remote sensing. The information of single-modal data is insufficient for accurate classification, especially in complex scenes, while the complementarity of multi-modal data such as hyperspectral images (HSIs) and light detection and ranging (LiDAR) data could effectively improve classification performance. The attention mechanism has recently been widely used in multi-modal LULC classification methods to achieve better feature representation. However, the knowledge of data is insufficiently considered in these methods, such as spectral mixture in HSIs and inconsistent spatial scales of different categories in LiDAR data. Moreover, multi-modal features contain different physical attributes, HSI features can represent spectral information of several channels while LiDAR features focus on elevation information at the spatial dimension. Ignoring these attributes, feature fusion may introduce redundant information and effect detrimentally on classification. In this paper, we propose an attribute-guided feature fusion network with knowledge-inspired attention mechanisms, named AFNKA. Focusing on the spectral characteristics of HSI and elevation information of LiDAR data, we design the knowledge-inspired attention mechanism to explore enhanced features. Especially, a novel adaptive cosine estimator (ACE) based attention module is presented to learn features with more discriminability, which adequately utilizes the spatial–spectral correlation of HSI mixed pixels. In the fusion stage, two novel attribute-guided fusion modules are developed to selectively aggregate multi-modal features, which sufficiently exploit the correlations between the spatial–spectral property of HSI features and the spatial-elevation property of LiDAR features. Experimental results on several multi-source datasets quantitatively indicate that the proposed AFNKA significantly outperforms the state-of-the-art methods.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107332"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002114","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Land use and land cover (LULC) classification is a popular research area in remote sensing. The information of single-modal data is insufficient for accurate classification, especially in complex scenes, while the complementarity of multi-modal data such as hyperspectral images (HSIs) and light detection and ranging (LiDAR) data could effectively improve classification performance. The attention mechanism has recently been widely used in multi-modal LULC classification methods to achieve better feature representation. However, the knowledge of data is insufficiently considered in these methods, such as spectral mixture in HSIs and inconsistent spatial scales of different categories in LiDAR data. Moreover, multi-modal features contain different physical attributes, HSI features can represent spectral information of several channels while LiDAR features focus on elevation information at the spatial dimension. Ignoring these attributes, feature fusion may introduce redundant information and effect detrimentally on classification. In this paper, we propose an attribute-guided feature fusion network with knowledge-inspired attention mechanisms, named AFNKA. Focusing on the spectral characteristics of HSI and elevation information of LiDAR data, we design the knowledge-inspired attention mechanism to explore enhanced features. Especially, a novel adaptive cosine estimator (ACE) based attention module is presented to learn features with more discriminability, which adequately utilizes the spatial–spectral correlation of HSI mixed pixels. In the fusion stage, two novel attribute-guided fusion modules are developed to selectively aggregate multi-modal features, which sufficiently exploit the correlations between the spatial–spectral property of HSI features and the spatial-elevation property of LiDAR features. Experimental results on several multi-source datasets quantitatively indicate that the proposed AFNKA significantly outperforms the state-of-the-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信