Jiaxuan Wang , Chao Jiang , Chi Cao , Xuming Zhuang , Baoyan Liang , Yue Wang , Hai Bi
{"title":"Red thermally activated delayed fluorescence materials for high-performance organic light-emitting diode","authors":"Jiaxuan Wang , Chao Jiang , Chi Cao , Xuming Zhuang , Baoyan Liang , Yue Wang , Hai Bi","doi":"10.1016/j.orgel.2025.107238","DOIUrl":null,"url":null,"abstract":"<div><div>Developing red thermally activated delayed fluorescence (TADF) materials is challenging but crucial for realizing full-color displays and solid-state lighting systems. In this work, we propose a novel design strategy that connects two emitting units to a phenyl ring to create efficient red luminescent materials. Two D-A-π-A-D type TADF molecules with mild-twist structures, <em>m</em>-DTPAQCN and <em>p</em>-DTPAQCN, were designed and synthesized. These molecules incorporate an electron-withdrawing acceptor of quinoxaline-6,7-dicarbonitrile group and an electron-donating donor of triphenylamine group. Both <em>m</em>-DTPAQCN and <em>p</em>-DTPAQCN exhibit red emissions in toluene solutions at 607 nm and 614 nm, respectively, and in doped films at 618 nm and 627 nm. The doped films, prepared with varying doping concentrations, demonstrate excellent photoluminescence quantum yields (PLQYs) ranging from 60.10 % to 84.70 %. The corresponding organic light-emitting diodes (OLEDs) employing <em>m</em>-DTPAQCN and <em>p</em>-DTPAQCN as emitters present efficient red electroluminescence with a maximum external quantum efficiency of 17.37 % and 20.05 %, respectively. This work provides a new and effective strategy for designing efficient red TADF molecules, offering significant potential for application in OLEDs.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107238"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000448","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing red thermally activated delayed fluorescence (TADF) materials is challenging but crucial for realizing full-color displays and solid-state lighting systems. In this work, we propose a novel design strategy that connects two emitting units to a phenyl ring to create efficient red luminescent materials. Two D-A-π-A-D type TADF molecules with mild-twist structures, m-DTPAQCN and p-DTPAQCN, were designed and synthesized. These molecules incorporate an electron-withdrawing acceptor of quinoxaline-6,7-dicarbonitrile group and an electron-donating donor of triphenylamine group. Both m-DTPAQCN and p-DTPAQCN exhibit red emissions in toluene solutions at 607 nm and 614 nm, respectively, and in doped films at 618 nm and 627 nm. The doped films, prepared with varying doping concentrations, demonstrate excellent photoluminescence quantum yields (PLQYs) ranging from 60.10 % to 84.70 %. The corresponding organic light-emitting diodes (OLEDs) employing m-DTPAQCN and p-DTPAQCN as emitters present efficient red electroluminescence with a maximum external quantum efficiency of 17.37 % and 20.05 %, respectively. This work provides a new and effective strategy for designing efficient red TADF molecules, offering significant potential for application in OLEDs.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.