Taotao Rao , Qian Qiao , Jun Zhou , Jian Zheng , Xuan Yu , Xiaoming Yu , Cunxi Zhang , Rui Wang
{"title":"Performance improvement of ZnO nanorod arrays / ZnO quantum dots / P3HT hybrid photodetector by Au nanoparticles","authors":"Taotao Rao , Qian Qiao , Jun Zhou , Jian Zheng , Xuan Yu , Xiaoming Yu , Cunxi Zhang , Rui Wang","doi":"10.1016/j.orgel.2025.107239","DOIUrl":null,"url":null,"abstract":"<div><div>Self-powered hybrid plasmonic photodetectors based on Zinc oxide (ZnO) nanorod arrays (NRAs)/ZnO quantum dots (QDs)/poly(3-hexylthiophene) (P3HT) incorporated with gold nanoparticles (Au NPs) were successfully fabricated. The photoresponse performance of the ZnO NRAs/ZnO QDs/P3HT hybrid photodetectors was enhanced by the incorporation of Au NPs. The optimal ZnO NRAs/ZnO QDs-Au(250) NPs/P3HT organic-inorganic hybrid plasmonic photodetector exhibits a photo-to-dark current ratio of 2450, a responsivity of 46 mA/W and a specific detectivity of 1.88 × 10<sup>11</sup> Jones under 525 nm light illumination and zero bias voltage. This study offers novel insights into the utilization of metal nanoparticles to enhance the performance of organic-inorganic hybrid photodetectors.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107239"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156611992500045X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-powered hybrid plasmonic photodetectors based on Zinc oxide (ZnO) nanorod arrays (NRAs)/ZnO quantum dots (QDs)/poly(3-hexylthiophene) (P3HT) incorporated with gold nanoparticles (Au NPs) were successfully fabricated. The photoresponse performance of the ZnO NRAs/ZnO QDs/P3HT hybrid photodetectors was enhanced by the incorporation of Au NPs. The optimal ZnO NRAs/ZnO QDs-Au(250) NPs/P3HT organic-inorganic hybrid plasmonic photodetector exhibits a photo-to-dark current ratio of 2450, a responsivity of 46 mA/W and a specific detectivity of 1.88 × 1011 Jones under 525 nm light illumination and zero bias voltage. This study offers novel insights into the utilization of metal nanoparticles to enhance the performance of organic-inorganic hybrid photodetectors.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.