Recent advances in electrochemical biosensors for bacterial detection

Yunyang Zhou , Qingcui Wang , Ting Xiang , Xiaohua Chen
{"title":"Recent advances in electrochemical biosensors for bacterial detection","authors":"Yunyang Zhou ,&nbsp;Qingcui Wang ,&nbsp;Ting Xiang ,&nbsp;Xiaohua Chen","doi":"10.1016/j.ntm.2025.100078","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient bacterial detection remains a critical challenge in clinical diagnostics and public health. Conventional methods are often constrained by low sensitivity and labor-intensive workflows. In contrast, electrochemical sensors offer distinct advantages: high sensitivity, rapid response, cost-effectiveness, and ease of use. The advancement of electrochemical sensors for bacterial detection relies on the continuous optimization of fundamental sensing architectures and the integration of advanced technologies. This review adopts a dual foundation-to-frontier framework. Analyzing essential sensor components such as functional nanomaterials for interface engineering, precisely engineered biorecognition elements, and established electrochemical detection methodologies. Simultaneously, through an advanced technological lens, we explore cutting-edge interdisciplinary innovations such as dual-modal sensing systems, flexible sensor architectures, and artificial intelligence-driven analytical systems. By synthesizing foundational principles and technological innovations, this review not only informs rational sensor design but also delineates the transition toward miniaturized, intelligent, and high-throughput systems for precision medicine and environmental monitoring. This work aims to offer forward-looking guidance for the future development of bacterial detection technologies.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676025000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient bacterial detection remains a critical challenge in clinical diagnostics and public health. Conventional methods are often constrained by low sensitivity and labor-intensive workflows. In contrast, electrochemical sensors offer distinct advantages: high sensitivity, rapid response, cost-effectiveness, and ease of use. The advancement of electrochemical sensors for bacterial detection relies on the continuous optimization of fundamental sensing architectures and the integration of advanced technologies. This review adopts a dual foundation-to-frontier framework. Analyzing essential sensor components such as functional nanomaterials for interface engineering, precisely engineered biorecognition elements, and established electrochemical detection methodologies. Simultaneously, through an advanced technological lens, we explore cutting-edge interdisciplinary innovations such as dual-modal sensing systems, flexible sensor architectures, and artificial intelligence-driven analytical systems. By synthesizing foundational principles and technological innovations, this review not only informs rational sensor design but also delineates the transition toward miniaturized, intelligent, and high-throughput systems for precision medicine and environmental monitoring. This work aims to offer forward-looking guidance for the future development of bacterial detection technologies.
用于细菌检测的电化学生物传感器研究进展
准确和高效的细菌检测仍然是临床诊断和公共卫生的一个关键挑战。传统的方法往往受到低灵敏度和劳动密集型工作流程的限制。相比之下,电化学传感器具有明显的优势:高灵敏度,快速响应,成本效益和易于使用。电化学细菌检测传感器的发展依赖于基本传感结构的不断优化和先进技术的集成。本综述采用基础到前沿的双重框架。分析必要的传感器组件,如用于界面工程的功能纳米材料,精确工程的生物识别元件,以及建立的电化学检测方法。同时,通过先进的技术镜头,我们探索前沿的跨学科创新,如双模态传感系统,柔性传感器架构和人工智能驱动的分析系统。通过综合基本原理和技术创新,本综述不仅为合理的传感器设计提供了信息,而且描述了向精密医疗和环境监测的小型化,智能化和高通量系统的过渡。本工作旨在为细菌检测技术的未来发展提供前瞻性指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信