Sustainable Electrochemical-Magnetic Biosensor Fabricated from Recycled Materials for Label-Free Detection of SARS-CoV-2 in Human Saliva

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Caio Lenon Chaves Carvalho, Steffane Q. Nascimento, Thiago Bertaglia, Luana C. I. Faria, Erika R. Manuli, Geovana M. Pereira, Welter Cantanhêde da Silva, Carlos M. Costa, Josu Fernández Maestu, Senentxu Lanceros-Méndez, Osvaldo N. Oliveira, Jr., Ester C. Sabino, Frank N. Crespilho
{"title":"Sustainable Electrochemical-Magnetic Biosensor Fabricated from Recycled Materials for Label-Free Detection of SARS-CoV-2 in Human Saliva","authors":"Caio Lenon Chaves Carvalho, Steffane Q. Nascimento, Thiago Bertaglia, Luana C. I. Faria, Erika R. Manuli, Geovana M. Pereira, Welter Cantanhêde da Silva, Carlos M. Costa, Josu Fernández Maestu, Senentxu Lanceros-Méndez, Osvaldo N. Oliveira, Jr., Ester C. Sabino, Frank N. Crespilho","doi":"10.1021/acssensors.4c03175","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has highlighted the critical need for scalable, rapid, and cost-effective diagnostic solutions, especially in resource-limited settings. In this study, we developed a sustainable magnetic electrochemical biosensor for the mass testing of SARS-CoV-2, emphasizing affordability, environmental impact reduction, and clinical applicability. By leveraging recycled materials from spent batteries and plastics, we achieved a circular economy-based fabrication process with a recyclability rate of 98.5%. The biosensor employs MnFe<sub>2</sub>O<sub>4</sub> nanoparticles functionalized with anti-SARS-CoV-2 antibodies, integrated into a 3D-printed electrochemical device for decentralized testing. Advanced characterization confirmed the biosensor’s robust performance, including high sensitivity (LOD: 3.46 pg mL<sup>–1</sup>) and specificity, with results demonstrating a 95% correlation to RT-PCR gold standard testing. The cost of materials used per biosensor test is only USD 0.2, making it highly affordable and suitable for large-scale production using additive manufacturing. Key features include simple preparation, rapid response, and reusability, making it ideal for point-of-care diagnostics. Beyond COVID-19, this platform’s modularity allows for adaptation to other viral diseases, offering a versatile solution to global diagnostic challenges. This work highlights the potential of integrating electrochemical sensing with sustainable practices to address healthcare inequities and reduce environmental impact.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"56 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03175","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has highlighted the critical need for scalable, rapid, and cost-effective diagnostic solutions, especially in resource-limited settings. In this study, we developed a sustainable magnetic electrochemical biosensor for the mass testing of SARS-CoV-2, emphasizing affordability, environmental impact reduction, and clinical applicability. By leveraging recycled materials from spent batteries and plastics, we achieved a circular economy-based fabrication process with a recyclability rate of 98.5%. The biosensor employs MnFe2O4 nanoparticles functionalized with anti-SARS-CoV-2 antibodies, integrated into a 3D-printed electrochemical device for decentralized testing. Advanced characterization confirmed the biosensor’s robust performance, including high sensitivity (LOD: 3.46 pg mL–1) and specificity, with results demonstrating a 95% correlation to RT-PCR gold standard testing. The cost of materials used per biosensor test is only USD 0.2, making it highly affordable and suitable for large-scale production using additive manufacturing. Key features include simple preparation, rapid response, and reusability, making it ideal for point-of-care diagnostics. Beyond COVID-19, this platform’s modularity allows for adaptation to other viral diseases, offering a versatile solution to global diagnostic challenges. This work highlights the potential of integrating electrochemical sensing with sustainable practices to address healthcare inequities and reduce environmental impact.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信