Superlubricating electrical contact between graphite layers

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yanmin Liu, Dong Wang, Ke Zhang, Haijun Wu, Guoqing Yu, Qiang Zhang, Yuanzi Zhou, Tianbao Ma, Aisheng Song
{"title":"Superlubricating electrical contact between graphite layers","authors":"Yanmin Liu, Dong Wang, Ke Zhang, Haijun Wu, Guoqing Yu, Qiang Zhang, Yuanzi Zhou, Tianbao Ma, Aisheng Song","doi":"10.26599/frict.2025.9440989","DOIUrl":null,"url":null,"abstract":"<p>High-conductivity sliding electrical contact with low friction plays a significant role in the long life and high reliability of electromechanical systems. Reducing friction needs weak interfacial electronic coupling; in contrast, enhancing conductivity requires strong coupling; thus it is a serious challenge to achieve high conductivity with low friction. Here, using our self-developed thermally assisted mechanical exfoliation and transfer (TAMET) method, we experimentally achieved superlubricating electrical contact by establishing a sliding electrical system between graphite layers (Gr); the friction coefficient was as low as 0.0004, and the electric current density was as high as 510 A/cm<sup>2</sup>. Compared with the commercial Ir atomic force microscopy (AFM) tip–Gr contact, the friction force of incommensurate graphene layer friction is an order of magnitude lower, yet it has a similar high electrical conductivity. On the basis of the electronic property fluctuation (EPF) model and first principles calculations, we revealed that the sliding energy barrier remains almost unchanged under an applied current because of the negligible electron transfer variation during the sliding process. We offer a method for achieving superlubricating electrical contact with high conductivity and low friction, shedding light on improving the service life and reliability of sliding electrical contacts in a wide range of electromechanical systems.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"6 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9440989","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-conductivity sliding electrical contact with low friction plays a significant role in the long life and high reliability of electromechanical systems. Reducing friction needs weak interfacial electronic coupling; in contrast, enhancing conductivity requires strong coupling; thus it is a serious challenge to achieve high conductivity with low friction. Here, using our self-developed thermally assisted mechanical exfoliation and transfer (TAMET) method, we experimentally achieved superlubricating electrical contact by establishing a sliding electrical system between graphite layers (Gr); the friction coefficient was as low as 0.0004, and the electric current density was as high as 510 A/cm2. Compared with the commercial Ir atomic force microscopy (AFM) tip–Gr contact, the friction force of incommensurate graphene layer friction is an order of magnitude lower, yet it has a similar high electrical conductivity. On the basis of the electronic property fluctuation (EPF) model and first principles calculations, we revealed that the sliding energy barrier remains almost unchanged under an applied current because of the negligible electron transfer variation during the sliding process. We offer a method for achieving superlubricating electrical contact with high conductivity and low friction, shedding light on improving the service life and reliability of sliding electrical contacts in a wide range of electromechanical systems.

Abstract Image

石墨层之间的超润滑电接触
低摩擦高导电性滑动电触点对机电系统的长寿命和高可靠性起着重要作用。减少摩擦需要弱的界面电子耦合;相反,提高电导率需要强耦合;因此,实现低摩擦的高导电性是一个严峻的挑战。在这里,我们利用我们自主开发的热辅助机械剥离和转移(TAMET)方法,通过在石墨层(Gr)之间建立滑动电气系统,实验实现了超润滑电接触;摩擦系数低至0.0004,电流密度高达510 A/cm2。与商用红外原子力显微镜(AFM)尖端- gr接触相比,石墨烯层不相称摩擦的摩擦力降低了一个数量级,但具有相似的高导电性。基于电子性质波动(EPF)模型和第一性原理计算,我们发现由于滑动过程中电子转移的变化可以忽略不计,在施加电流的情况下,滑动能垒几乎保持不变。我们提供了一种实现高导电性和低摩擦超润滑电触点的方法,有助于提高各种机电系统中滑动电触点的使用寿命和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信