Guanjie Li, Dengpan Dong, Dmitry Bedrov, Qinqin Cai, Haojun Wu, Zixing Wang, Jilei Liu, Kang Xu, Lidan Xing, Weishan Li
{"title":"Correlating electrode nano-confinement to interphase chemistry","authors":"Guanjie Li, Dengpan Dong, Dmitry Bedrov, Qinqin Cai, Haojun Wu, Zixing Wang, Jilei Liu, Kang Xu, Lidan Xing, Weishan Li","doi":"10.1016/j.joule.2025.101874","DOIUrl":null,"url":null,"abstract":"The electrode/electrolyte interphases in advanced batteries are critical for their performance, influencing the reversibility and rate capability of cell reactions. Although much research has focused on the electrolyte side, our study reveals the significant impact of the electrode’s interlayer distance on interphasial chemistry. We discovered that smaller interlayer distances in graphitic anodes lead to higher sensitivity to co-intercalation of Li<sup>+</sup> and solvents, resulting in LiF-poor interphases that reduce stability. Conversely, larger interlayer distances allow anion-rich solvation structures, resulting in LiF-rich interphases and facilitating reversible intercalation/deintercalation reactions. This correlation between interlayer distance and interphasial chemistry offers new strategies for designing next-generation battery electrolytes and electrodes, moving beyond electrolyte engineering to include electrode structural considerations. Our findings are universally applicable across diverse electrolyte systems, providing a robust framework for optimizing battery performance.","PeriodicalId":343,"journal":{"name":"Joule","volume":"183 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electrode/electrolyte interphases in advanced batteries are critical for their performance, influencing the reversibility and rate capability of cell reactions. Although much research has focused on the electrolyte side, our study reveals the significant impact of the electrode’s interlayer distance on interphasial chemistry. We discovered that smaller interlayer distances in graphitic anodes lead to higher sensitivity to co-intercalation of Li+ and solvents, resulting in LiF-poor interphases that reduce stability. Conversely, larger interlayer distances allow anion-rich solvation structures, resulting in LiF-rich interphases and facilitating reversible intercalation/deintercalation reactions. This correlation between interlayer distance and interphasial chemistry offers new strategies for designing next-generation battery electrolytes and electrodes, moving beyond electrolyte engineering to include electrode structural considerations. Our findings are universally applicable across diverse electrolyte systems, providing a robust framework for optimizing battery performance.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.