{"title":"Enhancing electron transport for efficiency -recorded HTL-free inverted perovskite solar cells by molecular complementary passivation","authors":"Qingbin Cai, Qin Tan, Jiacheng He, Siyuan Tang, Qiang Sun, Dong He, Tianle Cheng, Guoqiang Ma, Jinfeng Huang, Gangsen Su, Chuanxin Chen, Hao Gu, Bingzhe Wang, Jing Fan, Guichuan Xing, Zhubing He","doi":"10.1016/j.joule.2025.101880","DOIUrl":null,"url":null,"abstract":"Inverted perovskite solar cells without pre-depositing a layer of hole-transport materials (HTL-free PSCs) still suffer from the non-irradiative recombination at the perovskite/electron-transport layer (ETL) interface. In this work, we report a molecular complementary passivation (MCP) strategy by employing propylphosphonic acid 3-ammonium bromide (PPAABr) to cooperate with phenethylammonium bromide (PEABr) to mutually passivate surface defects of I and formamidinium (FA) vacancies by multi-coordination. This passivation led to an obvious decrease in interfacial defect-state density and greatly improved exciton and carrier lifetime for the perovskite film. Moreover, MCP surface treatment pushes the perovskite surface Fermi level closer to that of ETL, thereby enhancing interfacial electron extraction. As a result, MCP-based HTL-free PSC achieved a record efficiency of 26.40% (25.92% certified). The encapsulated device retains 94.8% of its initial efficiency after 1,000 h of light soaking. The generality of the MCP strategy also generated a competitive efficiency of 23.66% for 1.68 eV wide-band-gap PSCs.","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101880","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inverted perovskite solar cells without pre-depositing a layer of hole-transport materials (HTL-free PSCs) still suffer from the non-irradiative recombination at the perovskite/electron-transport layer (ETL) interface. In this work, we report a molecular complementary passivation (MCP) strategy by employing propylphosphonic acid 3-ammonium bromide (PPAABr) to cooperate with phenethylammonium bromide (PEABr) to mutually passivate surface defects of I and formamidinium (FA) vacancies by multi-coordination. This passivation led to an obvious decrease in interfacial defect-state density and greatly improved exciton and carrier lifetime for the perovskite film. Moreover, MCP surface treatment pushes the perovskite surface Fermi level closer to that of ETL, thereby enhancing interfacial electron extraction. As a result, MCP-based HTL-free PSC achieved a record efficiency of 26.40% (25.92% certified). The encapsulated device retains 94.8% of its initial efficiency after 1,000 h of light soaking. The generality of the MCP strategy also generated a competitive efficiency of 23.66% for 1.68 eV wide-band-gap PSCs.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.