Process cost analysis of performance challenges and their mitigations in sodium-ion battery cathode materials

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-03-14 DOI:10.1016/j.joule.2025.101871
Mrigi Munjal, Thorben Prein, Mahmoud M. Ramadan, Hugh B. Smith, Vineeth Venugopal, Jennifer L.M. Rupp, Iwnetim I. Abate, Elsa A. Olivetti, Kevin J. Huang
{"title":"Process cost analysis of performance challenges and their mitigations in sodium-ion battery cathode materials","authors":"Mrigi Munjal, Thorben Prein, Mahmoud M. Ramadan, Hugh B. Smith, Vineeth Venugopal, Jennifer L.M. Rupp, Iwnetim I. Abate, Elsa A. Olivetti, Kevin J. Huang","doi":"10.1016/j.joule.2025.101871","DOIUrl":null,"url":null,"abstract":"The success of sodium-ion batteries (SIBs) hinges on mitigating underperformance in ways that are cost effective, manufacturable, and scalable. This work investigates interfacial, morphological, and bulk interventions to enhance the performance of layered metal oxide cathode active materials (CAMs) for SIBs. We mapped the full space of literature-reported SIB CAM challenges and their mitigations. We then estimated the manufacturing costs for a diverse and representative set of mitigation approaches. Adding sacrificial salts can be cost effective, given low materials costs and minimal process changes. By contrast, many methods are reported to tune CAM morphology. Several are likely challenging at scale due to process throughput and yield limitations. Finally, bulk modifications can mitigate the moisture sensitivity of some CAMs, a likely less costly route than expanding stringent atmosphere controls during manufacturing. We end by discussing the limits and promise of process cost analysis, given the current state of battery reporting in the literature.","PeriodicalId":343,"journal":{"name":"Joule","volume":"54 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101871","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The success of sodium-ion batteries (SIBs) hinges on mitigating underperformance in ways that are cost effective, manufacturable, and scalable. This work investigates interfacial, morphological, and bulk interventions to enhance the performance of layered metal oxide cathode active materials (CAMs) for SIBs. We mapped the full space of literature-reported SIB CAM challenges and their mitigations. We then estimated the manufacturing costs for a diverse and representative set of mitigation approaches. Adding sacrificial salts can be cost effective, given low materials costs and minimal process changes. By contrast, many methods are reported to tune CAM morphology. Several are likely challenging at scale due to process throughput and yield limitations. Finally, bulk modifications can mitigate the moisture sensitivity of some CAMs, a likely less costly route than expanding stringent atmosphere controls during manufacturing. We end by discussing the limits and promise of process cost analysis, given the current state of battery reporting in the literature.

Abstract Image

钠离子电池正极材料性能挑战的工艺成本分析及其缓解措施
钠离子电池(sib)的成功取决于以具有成本效益、可制造性和可扩展性的方式减轻性能不佳的问题。这项工作研究了界面、形态和体干预,以提高sib层状金属氧化物阴极活性材料(CAMs)的性能。我们绘制了文献报道的SIB CAM挑战及其缓解措施的完整空间。然后,我们估计了各种具有代表性的缓解方法的制造成本。由于材料成本低,工艺变化最小,添加牺牲盐具有成本效益。相比之下,许多方法被报道来调整凸轮形态。由于工艺吞吐量和良率的限制,一些可能在规模上具有挑战性。最后,批量修改可以减轻某些cam的湿度敏感性,这可能比在制造过程中扩大严格的大气控制成本更低。最后,我们讨论了过程成本分析的局限性和前景,鉴于文献中电池报告的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信