Jingwen Hou, Guangkai Jin, Yi Wang, Yixin Wang, Shujuan Liu, Mingming Yang, Qian Ye, Feng Zhou
{"title":"Fabrication of Dialkyl Dithiophosphate-Functionalized Carbon Aerogel Microspheres for Enhanced Lubrication Performance","authors":"Jingwen Hou, Guangkai Jin, Yi Wang, Yixin Wang, Shujuan Liu, Mingming Yang, Qian Ye, Feng Zhou","doi":"10.1021/acs.langmuir.5c00455","DOIUrl":null,"url":null,"abstract":"Herein, functionalized carbon aerogel microspheres (CAMs) were successfully prepared by the pyrolysis of resorcinol-formaldehyde (RF) microspheres followed by surface modification. First, RF microspheres were carbonized to obtain CAMs. Afterward, the polyphenolic compound of epigallocatechin gallate (EGCG) was reacted with melamine to form a poly(EGCG) layer onto the CAM surface, followed by bonding the antiwear molecule dialkyl dithiophosphate (DDP) by the Michael addition, resulting in DDP-functionalized CAMs (DDP-CAMs). The grafting antiwear molecule DDP improved the lipophilicity of the CAMs, enabling stable dispersion in the base oil 500SN for over 10 days while also enhancing their antifriction and antiwear properties. The addition of 1.0 wt % DDP-CAMs to 500SN resulted in a 34.7% reduction in coefficient of friction and a 47.5% decrease in wear volume. The enhanced lubrication performance can be attributed to a synergistic effect. On one hand, a protective film was generated through tribo-chemical reactions. At the same time, the DDP-CAMs present at the contact interface exhibited a nanoscale rolling and self-repairing effect.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"87 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, functionalized carbon aerogel microspheres (CAMs) were successfully prepared by the pyrolysis of resorcinol-formaldehyde (RF) microspheres followed by surface modification. First, RF microspheres were carbonized to obtain CAMs. Afterward, the polyphenolic compound of epigallocatechin gallate (EGCG) was reacted with melamine to form a poly(EGCG) layer onto the CAM surface, followed by bonding the antiwear molecule dialkyl dithiophosphate (DDP) by the Michael addition, resulting in DDP-functionalized CAMs (DDP-CAMs). The grafting antiwear molecule DDP improved the lipophilicity of the CAMs, enabling stable dispersion in the base oil 500SN for over 10 days while also enhancing their antifriction and antiwear properties. The addition of 1.0 wt % DDP-CAMs to 500SN resulted in a 34.7% reduction in coefficient of friction and a 47.5% decrease in wear volume. The enhanced lubrication performance can be attributed to a synergistic effect. On one hand, a protective film was generated through tribo-chemical reactions. At the same time, the DDP-CAMs present at the contact interface exhibited a nanoscale rolling and self-repairing effect.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).