Inherently evolved Cr-riveted protective film on stainless steel enabling stable seawater splitting

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Hongming Hong , Jiankun Li , Shiyi Li , Linfeng Lei , Yuqing Lin , Minghui Zhu , Linzhou Zhuang , Zhi Xu
{"title":"Inherently evolved Cr-riveted protective film on stainless steel enabling stable seawater splitting","authors":"Hongming Hong ,&nbsp;Jiankun Li ,&nbsp;Shiyi Li ,&nbsp;Linfeng Lei ,&nbsp;Yuqing Lin ,&nbsp;Minghui Zhu ,&nbsp;Linzhou Zhuang ,&nbsp;Zhi Xu","doi":"10.1016/j.ces.2025.121533","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen production by seawater electrolysis faces challenges due to chloride-induced corrosion, necessitating expensive titanium anodes. Thus, a low-cost, high performance, and robust catalyst is urgently needed. Herein, we report a chromic acid-induced oxidation strategy to form an iron doped α-Ni(OH)<sub>2</sub> protective film on stainless steel substrate (SS) to obtain the SS-Cr-Ox catalyst. The iron doped α-Ni(OH)<sub>2</sub> could further inherently evolve into the dense iron doped γ-NiOOH film with the leaching metal species of SS substrate. Cr species promotes the riveting of γ-NiOOH film with the passivating layer of SS, while the SS skeleton also contributes to the great stability of SS-Cr-Ox. Therefore, the SS-Cr-Ox could stably operate for ∼100 h at 200 mA cm<sup>−2</sup> in the 0.1 M KOH + 0.6 M NaCl, and 75 h at 2 A cm<sup>−2</sup> in 1 M KOH + 2 M NaCl, far superior to the bare SS substrate and unriveted SS-NiFeCr catalyst.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"309 ","pages":"Article 121533"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925003562","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen production by seawater electrolysis faces challenges due to chloride-induced corrosion, necessitating expensive titanium anodes. Thus, a low-cost, high performance, and robust catalyst is urgently needed. Herein, we report a chromic acid-induced oxidation strategy to form an iron doped α-Ni(OH)2 protective film on stainless steel substrate (SS) to obtain the SS-Cr-Ox catalyst. The iron doped α-Ni(OH)2 could further inherently evolve into the dense iron doped γ-NiOOH film with the leaching metal species of SS substrate. Cr species promotes the riveting of γ-NiOOH film with the passivating layer of SS, while the SS skeleton also contributes to the great stability of SS-Cr-Ox. Therefore, the SS-Cr-Ox could stably operate for ∼100 h at 200 mA cm−2 in the 0.1 M KOH + 0.6 M NaCl, and 75 h at 2 A cm−2 in 1 M KOH + 2 M NaCl, far superior to the bare SS substrate and unriveted SS-NiFeCr catalyst.

Abstract Image

内置进化的铬铆接不锈钢保护膜,使海水稳定分裂
由于氯化物引起的腐蚀,海水电解制氢面临挑战,需要昂贵的钛阳极。因此,迫切需要一种低成本、高性能、坚固耐用的催化剂。本文报道了铬酸诱导氧化策略,在不锈钢衬底(SS)上形成铁掺杂α-Ni(OH)2保护膜,以获得SS- cr - ox催化剂。铁掺杂α-Ni(OH)2可以随着SS底物的浸出金属种类进一步内在演化成致密的铁掺杂γ-NiOOH膜。Cr种促进了γ-NiOOH膜与SS钝化层的铆接,而SS骨架也有助于SS-Cr- ox具有较高的稳定性。因此,SS-Cr-Ox可以稳定运行在200∼100 h 马厘米−2 0.1 M KOH + 0.6 M氯化钠,和75年 h 2  厘米−2 1 M KOH + 2 M氯化钠,远远优于裸不锈钢衬底和起铆钉SS-NiFeCr催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信