Disk Draining in LIGO Progenitor Black Hole Binaries and Its Significance to Electromagnetic Counterparts

Xiaoshan Huang, Sierra Dodd, Sophie Lund Schrøder, Shane W. Davis and Enrico Ramirez-Ruiz
{"title":"Disk Draining in LIGO Progenitor Black Hole Binaries and Its Significance to Electromagnetic Counterparts","authors":"Xiaoshan Huang, Sierra Dodd, Sophie Lund Schrøder, Shane W. Davis and Enrico Ramirez-Ruiz","doi":"10.3847/2041-8213/adbb62","DOIUrl":null,"url":null,"abstract":"The effect of tidal forces on transport within a relic accretion disk in binary black holes is studied here with a suite of two-dimensional hydrodynamic simulations. As the binary contracts owing to the emission of gravitational waves, the accretion disk is truncated, and a two-armed spiral wave is excited, which remains stationary in the rotating reference frame of the coalescing binary. Such spiral waves lead to increased transport of mass and angular momentum. Our findings suggest that even in the case of weakly ionized accretion disks spiral density waves will drain the disk long before the orbit of the two black holes decays enough for them to merge, thus dimming prospects for a detectable electromagnetic counterpart.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adbb62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of tidal forces on transport within a relic accretion disk in binary black holes is studied here with a suite of two-dimensional hydrodynamic simulations. As the binary contracts owing to the emission of gravitational waves, the accretion disk is truncated, and a two-armed spiral wave is excited, which remains stationary in the rotating reference frame of the coalescing binary. Such spiral waves lead to increased transport of mass and angular momentum. Our findings suggest that even in the case of weakly ionized accretion disks spiral density waves will drain the disk long before the orbit of the two black holes decays enough for them to merge, thus dimming prospects for a detectable electromagnetic counterpart.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信